Les bienfaits de la NMN (Nicotinamide Mononucleotide) sur la santé en général

La NMN est une molécule qui a attiré l'attention de la communauté scientifique en raison de ses bienfaits potentiels pour la santé. Ceux-ci incluent :

Réparation des os

Le mononucléotide de nicotinamide (NMN) joue un rôle important dans la réparation des os. Il contribue à la production de collagène, une protéine qui confère structure et solidité à nos os. En stimulant la production de collagène, la NMN peut aider à réparer les os endommagés et à prévenir les maladies osseuses. La NMN est donc un allié potentiel pour préserver la santé des os et lutter contre des maladies telles que l'ostéoporose. En outre, le rôle du NMN dans le métabolisme énergétique peut soutenir le processus de réparation et de remodelage osseux, qui demande beaucoup d'énergie. Ceci est particulièrement important lorsque nous vieillissons et que la densité osseuse diminue naturellement. Par conséquent, le rôle de la NMN dans la réparation osseuse n'est pas seulement crucial pour la guérison des blessures, mais aussi pour le maintien de la santé générale du squelette.

Lutte contre le cancer

De nouvelles recherches suggèrent que la NMN peut aider à lutter contre le cancer. Il y parvient en renforçant la réponse immunitaire de l'organisme et en inhibant la croissance des cellules cancéreuses. Il s'agit d'un domaine d'étude prometteur qui pourrait déboucher sur de nouveaux traitements contre le cancer. Le rôle potentiel du NMN dans la prévention et le traitement du cancer constitue une frontière passionnante dans la recherche en oncologie, offrant l'espoir de stratégies plus efficaces dans la lutte contre cette maladie. En outre, le rôle du NMN dans la réparation de l'ADN peut aider à prévenir les mutations génétiques qui conduisent souvent au cancer, ce qui ajoute une couche supplémentaire à son potentiel en tant qu'agent de lutte contre le cancer.

Santé cardiovasculaire

Le NMN peut être bénéfique pour la santé cardiovasculaire de plusieurs façons. Il peut améliorer la circulation sanguine, réduire l'inflammation et protéger contre les maladies cardiaques. En soutenant la santé de votre système cardiovasculaire, le NMN peut contribuer à la protection contre les maladies cardiaques et à l'amélioration de la fonction cardiaque en général. Il s'agit donc d'un allié puissant pour un cœur sain et un système circulatoire robuste. En outre, le rôle de la NMN dans le métabolisme énergétique peut répondre aux besoins énergétiques élevés du cœur, contribuant ainsi à la santé cardiovasculaire.

Réparation de l'ADN

La NMN contribue à la réparation de l'ADN, un processus vital qui répare les dommages causés à la molécule d'ADN. En améliorant ce processus, la NMN peut contribuer à maintenir la stabilité génétique et à prévenir les maladies. Ceci est crucial pour prévenir les mutations qui peuvent conduire à des maladies telles que le cancer. Grâce à son rôle dans la réparation de l'ADN, la NMN soutient l'intégrité de notre matériel génétique, contribuant ainsi à la santé cellulaire globale. En outre, en favorisant la réparation de l'ADN, la NMN peut aider à combattre les effets du vieillissement et des dommages environnementaux sur notre ADN, ce qui pourrait ralentir le processus de vieillissement et réduire le risque de maladies liées à l'âge.

Protection des yeux

On a découvert que la NMN avait des effets bénéfiques importants sur la santé des yeux. Il peut protéger les yeux en réduisant le stress oxydatif, une cause majeure des maladies oculaires liées à l'âge. Le stress oxydatif peut endommager la rétine et entraîner des maladies telles que la dégénérescence maculaire et la cataracte. En réduisant le stress oxydatif, la NMN peut contribuer à protéger les yeux contre ces affections. En outre, le rôle de la NMN dans le métabolisme énergétique peut répondre aux besoins énergétiques élevés des yeux, contribuant ainsi à la santé globale de l'œil. Par conséquent, le rôle de la NMN dans la protection des yeux n'est pas seulement crucial pour préserver la vision, mais aussi pour prévenir l'apparition de maladies oculaires liées à l'âge.

Renforcement de la fonction immunitaire

La NMN peut stimuler la fonction immunitaire en renforçant l'activité des cellules immunitaires. Cela peut contribuer à la protection contre les infections et les maladies. Un système immunitaire fort est essentiel pour lutter contre les maladies et rester en bonne santé. En outre, le rôle de la NMN dans le métabolisme énergétique peut soutenir les processus du système immunitaire qui demandent de l'énergie, ce qui renforce encore la fonction immunitaire. En soutenant la fonction immunitaire, la NMN peut aider à maintenir la santé et le bien-être en général, ce qui en fait un complément précieux pour ceux qui cherchent à renforcer leur immunité.

Longévité

Le NMN est lié à la longévité en raison de son rôle dans le métabolisme énergétique et la réparation de l'ADN. En augmentant les niveaux de NAD+, il peut aider à ralentir le processus de vieillissement. Cela pourrait potentiellement prolonger la durée de vie et améliorer la qualité de vie des personnes âgées. En outre, en favorisant la réparation de l'ADN et en réduisant le stress oxydatif, le NMN peut combattre les dommages cellulaires qui contribuent au vieillissement, ce qui favorise encore la longévité. Par conséquent, le rôle potentiel de la NMN dans la promotion de la longévité va au-delà de la simple prolongation de la durée de vie - elle pourrait également améliorer la qualité de ces années supplémentaires.

Métabolisme

La NMN joue un rôle clé dans le métabolisme énergétique. Il aide à convertir les aliments en énergie, en soutenant la santé métabolique globale. Ce rôle est crucial pour maintenir les niveaux d'énergie, soutenir l'activité physique et favoriser une gestion saine du poids. En outre, le rôle de la NMN dans l'augmentation des niveaux de NAD+ peut améliorer le métabolisme cellulaire, ce qui favorise la production d'énergie. Par conséquent, le rôle de la NMN dans le métabolisme n'est pas seulement crucial pour fournir l'énergie dont nous avons besoin pour fonctionner, mais aussi pour soutenir la santé et le bien-être en général.

Améliore la fonction cognitive

La NMN peut améliorer les fonctions cognitives en renforçant le métabolisme énergétique du cerveau et en protégeant contre les maladies neurodégénératives. Le cerveau est un organe gourmand en énergie, et le rôle de la NMN dans le métabolisme énergétique peut répondre aux besoins énergétiques élevés du cerveau, contribuant ainsi aux fonctions cognitives. En outre, le rôle de la NMN dans la réparation de l'ADN et la réduction du stress oxydatif peut protéger contre les lésions neuronales susceptibles d'entraîner un déclin cognitif. Par conséquent, le rôle de la NMN dans l'amélioration des fonctions cognitives n'est pas seulement crucial pour maintenir l'acuité mentale, mais aussi pour prévenir l'apparition de maladies neurodégénératives.

Amélioration de la fertilité

La recherche suggère que le NMN peut améliorer la fertilité en protégeant la qualité des ovules et en améliorant la santé reproductive. Le rôle de la NMN dans la réparation de l'ADN peut aider à maintenir l'intégrité génétique des ovules, ce qui est crucial pour la fertilité. En outre, le rôle du NMN dans le métabolisme énergétique peut soutenir les processus de reproduction qui demandent de l'énergie, ce qui améliore encore la fertilité. Par conséquent, le rôle potentiel de la NMN dans l'amélioration de la fertilité va au-delà de la simple augmentation des chances de conception - elle pourrait également contribuer à la santé des générations futures.

Peau et muscles

La NMN peut être bénéfique pour la santé de la peau et des muscles en stimulant la production de collagène et en améliorant le métabolisme énergétique. Le collagène est une protéine qui apporte structure et force à la peau et aux muscles, et le rôle de la NMN dans la production de collagène peut contribuer à la santé de la peau et des muscles. En outre, le rôle de la NMN dans le métabolisme énergétique peut soutenir les processus de maintenance et de réparation de la peau et des muscles, qui demandent beaucoup d'énergie. Par conséquent, le rôle de la NMN dans la santé de la peau et des muscles n'est pas seulement crucial pour le maintien de la force physique et de l'apparence, mais aussi pour la santé et le bien-être en général.

Santé des organes

Le NMN peut contribuer à la santé des organes en améliorant le métabolisme énergétique et en réduisant le stress oxydatif. Les organes sont des tissus qui demandent de l'énergie et le rôle du NMN dans le métabolisme énergétique peut répondre aux besoins énergétiques élevés des organes, contribuant ainsi à leur santé. En outre, le rôle de la NMN dans la réduction du stress oxydatif peut protéger les organes contre les dommages, contribuant ainsi à leur santé. Par conséquent, le rôle de la NMN dans la santé des organes n'est pas seulement crucial pour le maintien de la fonction des organes individuels, mais aussi pour la santé et le bien-être en général.

Mécanisme

Le NMN agit en augmentant les niveaux de NAD+ dans l'organisme. Le NAD+ est une coenzyme essentielle qui alimente les processus métaboliques et a un impact sur un large éventail de systèmes, notamment le métabolisme énergétique, la réparation de l'ADN et la survie des cellules. Cependant, les niveaux de NAD+ diminuent naturellement avec l'âge, entraînant un dysfonctionnement métabolique et un risque accru de maladie. En prenant un supplément de NMN, nous pouvons augmenter nos niveaux de NAD+, ce qui peut améliorer la santé et la longévité.

Ces avantages sont étayés par plus de 100 études scientifiques, sur lesquelles nous reviendrons plus loin dans cet article.

Structure chimique du NMN

Le mononucléotide nicotinamide (NMN) est un nucléotide dérivé du ribose et du nicotinamide. Comme le riboside de nicotinamide, le NMN est un dérivé de la niacine, et l'homme possède des enzymes qui peuvent utiliser le NMN pour générer du nicotinamide adénine dinucléotide (NADH).

La NMN est constituée d'une molécule de nicotinamide, d'un ribose et d'un groupe phosphate. Le ribose est un sucre simple essentiel à la production d'ATP, le principal vecteur d'énergie dans les cellules, tandis que le groupe phosphate renforce la stabilité de la molécule et soutient son rôle dans la biosynthèse du NAD+.


«Le NMN est constitué d'une molécule de nicotinamide, d'un ribose et d'un groupe phosphate.»

Cette structure unique permet à la NMN de jouer un rôle crucial dans la production d'énergie dans l'organisme. Il joue un rôle clé dans la création du NAD+, un coenzyme qui joue un rôle essentiel dans le transfert d'énergie dans les cellules et soutient le métabolisme cellulaire.


«Le NMN est un acteur clé dans la création du NAD+, une coenzyme qui joue un rôle vital dans le transfert d'énergie dans les cellules et soutient le métabolisme cellulaire»

Quels sont les aliments qui contiennent de la NMN ?

Le NMN, ou Nicotinamide Mononucleotide, est un composé puissant que l'on peut trouver naturellement dans diverses sources alimentaires. Il s'agit notamment de l'edamame, du brocoli, du chou, du concombre, des avocats, des tomates et de la viande de bœuf crue. Par exemple, l'edamame, une préparation de graines de soja immatures dans la cosse, est connue pour sa forte concentration en NMN. De même, des légumes comme le brocoli et le chou sont riches en NMN. Les fruits tels que les avocats et les tomates contiennent également du NMN, ce qui en fait un excellent complément à votre régime alimentaire si vous souhaitez augmenter votre apport en NMN. Même certains types de viande, comme le bœuf cru, contiennent du NMN. Cependant, il est important de noter que si ces aliments contiennent du NMN, les concentrations sont relativement faibles et il faudrait les consommer en grandes quantités pour constater une augmentation significative des niveaux de NMN dans l'organisme. C'est pourquoi de nombreuses personnes optent pour des suppléments de NMN, comme ceux proposés par C60 France, afin de s'assurer qu'elles reçoivent une dose efficace.

Dans la suite de cet article, nous approfondirons les bienfaits spécifiques du NMN pour la santé, études scientifiques à l'appui.

Liste des recherches sur le NMN

Ce tableau dresse la liste des principales études scientifiques sur les effets bénéfiques de la nicotinamide mononucléotide (NMN) sur la santé.

Catégorie de recherche Résumé / Conclusion Animal Homme
Réparation des os
  • Rajeunit les cellules souches de la moelle osseuse et favorise la formation osseuse. 2, 34, 35, 36
Lutte contre le cancer
  • Augmente l'effet de suppression tumorale des immunothérapies. 3, 38, 46
  • Réduit les effets secondaires toxiques des chimiothérapies. 37, 39, 92, 100, 105
  • Inhibe la croissance du cancer. 102
Cardiovasculaire
  • Restaurer les fonctions du cœur et des vaisseaux sanguins. 4, 23, 25, 40, 42, 78, 84
  • Protège le cœur contre les dommages après une crise cardiaque. 41, 43
  • Prévient l'insuffisance cardiaque en favorisant la santé des mitochondries. 44
Réparation de l'ADN
  • Améliore les mécanismes de réparation de l'ADN. 18
Protection des yeux
  • Favorise la récupération des yeux après une blessure. 6, 31, 80, 89, 96
  • Améliore la sécheresse oculaire en réduisant l'inflammation et en augmentant la sécrétion d'huile. 17, 45
Stimule la fonction immunitaire
  • Favorise la guérison de COVID-19. 7
  • Inhibe l'infection par COVID-19. 91
  • Réduit les réactions allergiques graves. 50
  • Réduit l'inflammation en supprimant l'activation des cellules immunitaires. 51
  • Réduit l'inflammation des tissus adipeux. 106
  • Réserve la fonction des cellules immunitaires contre l'hépatite B. 108
Longévité
  • Double la durée de vie. 8
  • Restaure le déclin cardiovasculaire, cognitif et métabolique. 20
  • Double la longueur des télomères. 5, 52
  • Réduit l'âge biologique. 93
  • Améliore la qualité du sommeil. 98
  • Rajeunit les cellules souches. 99
Métabolisme
  • Améliore la sensibilité à l'insuline et le métabolisme du glucose. 9, 27, 48, 49, 87
  • Améliore la production d'énergie en rajeunissant les mitochondries.21
  • Réduit les graisses circulant dans le sang. 85
Fonction cognitive
  • Améliore les déficits cognitifs et les anomalies cérébrales dans la maladie d'Alzheimer. 10, 53, 64
  • Améliore les troubles cognitifs liés à l'âge et protège contre les lésions des vaisseaux sanguins et du cerveau. 55, 56, 57, 59, 61, 62, 63, 65, 104
  • Favorise la récupération des fonctions cérébrales après une hémorragie et un accident vasculaire cérébral. 12, 58
  • Protège contre la neurodégénérescence et les troubles cognitifs associés au diabète. 60
  • Réduit les accidents vasculaires cérébraux causés par une consommation élevée de sel. 33
  • Réduit les comportements dépressifs. 11
Améliore la fertilité
  • Améliore la fertilité et le déclin de la qualité des ovocytes (œufs) lié à l'âge. 13 , 66 , 83
  • Protège les ovocytes contre les toxines environnementales. 19, 107
Peau et muscle
  • Augmente la force musculaire et améliore l'endurance à l'effort. 69, 71, 72, 95
  • Protège contre le vieillissement de la peau. 70, 79, 82
  • Favorise la cicatrisation des plaies. 94
Santé des organes
  • Réduit les dommages au foie causés par l'alcool. 14
  • Réduit la cicatrisation du foie. 16
  • Protection contre les lésions rénales. 15, 74, 81, 90
  • Régénère le déclin des intestins lié à l'âge. 75, 76, 86
  • Protège contre les lésions pulmonaires. 97, 101
  • Protège contre l'infection des organes. 103
Mécanisme
  • Une protéine qui transporte le NMN dans les cellules a été identifiée. 1
  • Induit un changement métabolique dans les cellules endommagées pour favoriser la survie. 77
  • Augmente la production de nucléotides (éléments constitutifs de l'ADN) dans les mitochondries. 88

Référence des études scientifiques sur le NMN

  1. Alessia Grozio, Kathryn F. Mills, Jun Yoshino, Santina Bruzzone, Giovanna Sociali, Kyohei Tokizane, Hanyue Cecilia Lei, Richard Cunningham, Yo Sasaki, Marie E. Migaud, Shin-ichiro Imai.Slc12a8 is a nicotinamide mononucleotide transporter.Nat Metab, 2019; DOI:10.1038/s42255-018-0009-4.
  2. Huang RX, Tao J. Nicotinamide mononucleotide attenuates glucocorticoid-induced osteogenic inhibition by regulating the SIRT1/PGC-1α signaling pathway.Mol Med Rep. 2020;22(1):145-154. doi:10.3892/mmr.2020.11116
  3. Lv H, Lv G, Chen C, Zong Q, Jiang G, Ye D, Cui X, He Y, Xiang W, Han Q, Tang L, Yang W, Wang H.NAD+Metabolism Maintains Inducible PD-L1 Expression to Drive Tumor Immune Evasion.Cell Metab. 2020 Nov 9.DOI:10.1016/j.cmet.2020.10.021
  4. Martin AS, Abraham DM, Hershberger KA, et al. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model.JCI Insight. 2017;2(14):e93885. Published 2017 Jul 20. doi:10.1172/jci.insight.93885
  5. Hisayuki Amano, Arindam Chaudhury, Cristian Rodriguez-Aguayo, Lan Lu, Viktor Akhanov, Andre Catic, Yury V. Popov, Eric Verdin, Hannah Johnson, Fabio Stossi, David A. Sinclair, Eiko Nakamaru-Ogiso, Gabriel Lopez-Berestein, Jeffrey T. Chang, Joel R. Neilson, Alan Meeker, Milton Finegold, Joseph A. Baur, Ergun Sahin.Telomere dysfunction induces sirtuin repression that drives telomere-dependent disease.Cell Metab, 2019; DOI:10.1016/j.cmet.2019.03.001.
  6. Chen X, Amorim JA, Moustafa GA, Lee JJ, Yu Z, Ishihara K, Iesato Y, Barbisan P, Ueta T, Togka KA, Lu L, Sinclair DA, Vavvas DG. Neuroprotective effects and mechanisms of action of nicotinamide mononucleotide (NMN) in a photoreceptor degenerative model of retinal detachment. Aging (Albany NY). 2020 Dec 29;12.doi: 10.18632/aging.202453. Epub ahead of print. PMID: 33373320.
  7. Omran HM, Almaliki MS.Influence of NAD+ as an ageing-related immunomodulator on COVID 19 infection: A hypothesis. J Infect Public Health. 2020 Sep;13(9):1196-1201. doi:10.1016/j.jiph.2020.06.004. Epub 2020 Jun 7. PMID: 32534944; PMCID: PMC7275989.
  8. Yoshida M, Satoh A, Lin JB, et al. Extracellular Vesicle-Contained eNAMPT Delays Aging and Extends Lifespan in Mice. Cell Metab. 2019;30(2):329-342.e5. doi:10.1016/j.cmet.2019.05.015
  9. Yoshino M, Yoshino J, Kayser BD, Patti G, Franczyk MP, Mills KF, Sindelar M, Pietka T, Patterson BW, Imai SI, Klein S. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science. 2021 Apr 22:eabe9985. doi: 10.1126/science.abe9985. Epub ahead of print. PMID: 33888596.
  10. Sanli Xing, Yiran Hu, Xujiao Huang, Dingzhu Shen, Chuan Chen.Nicotinamide phosphoribosyl transferase related signalling pathway in early Alzheimer’s disease mouse models.Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China (2019)doi:10.3892/mmr.2019.10782
  11. Xie X, Yu C, Zhou J, et al. Nicotinamide mononucleotide ameliorates the depression-like behaviors and is associated with attenuating the disruption of mitochondrial bioenergetics in depressed mice.J Affect Disord. 2020;263:166-174. doi:10.1016/j.jad.2019.11.147
  12. Liang Shu, Xiaolei Shen, Yaxue Zhao, Xinwei He, Jiawen Yin, Jingjing Su, Qiang Li, Jianren Liu.Mechanisms of transformation of nicotinamide mononucleotides to cerebral infarction hemorrhage based on MCAO model.Saudi J Biol Sci, 2020; DOI:10.1016/j.sjbs.2019.12.023.
  13. Yang L, Lin X, Tang H, Fan Y, Zeng S, Jia L, Li Y, Shi Y, He S, Wang H, Hu Z, Gong X, Liang X, Yang Y, Liu X. Mitochondrial DNA mutation exacerbates female reproductive aging via impairment of the NADH/NAD+ redox.Aging Cell. 2020 Sep;19(9):e13206. doi: 10.1111/acel.13206.
  14. Assiri MA, Ali HR, Marentette JO, Yun Y, Liu J, Hirschey MD, Saba LM, Harris PS, and Fritz KS.Investigating RNA expression profiles altered by nicotinamide mononucleotide therapy in a chronic model of alcoholic liver disease.Hum Genomics, 2019; DOI:10.1186/s40246-019-0251-1.
  15. Jia Y, Kang X, Tan L, Ren Y, Qu L, Tang J, Liu G, Wang S, Xiong Z and Yang L (2021)Nicotinamide Mononucleotide Attenuates Renal Interstitial Fibrosis After AKI by Suppressing Tubular DNA Damage and Senescence.Front. Physiol.12:649547. doi:10.3389/fphys.2021.649547
  16. Zong Z, Liu J, Wang N, Yang C, Wang Q, Zhang W, Chen Y, Liu X, Deng H.Nicotinamide mononucleotide inhibits hepatic stellate cell activation to prevent liver fibrosis via promoting PGE2degradation. Free Radic Biol Med. 2020 Nov 19:S0891-5849(20)31626-9. doi:10.1016/j.freeradbiomed.2020.11.014. Epub ahead of print. PMID: 33220424.
  17. Meng YF, Pu Q, Dai SY, Ma Q, Li X, Zhu W.Nicotinamide Mononucleotide Alleviates Hyperosmolarity-Induced IL-17a Secretion and Macrophage Activation in Corneal Epithelial Cells/Macrophage Co-Culture System. J Inflamm Res. 2021 Feb 22;14:479-493. doi:10.2147/JIR.S292764. PMID: 33658825; PMCID: PMC7917392.
  18. Li J, Bonkowski MS, Moniot S, et al. A conserved NAD+ binding pocket that regulates protein-protein interactions during aging. Science. 2017;355(6331):1312-1317. doi:10.1126/science.aad8242
  19. Miao Y, Li X, Shi X, Gao Q, Chen J, Wang R, Fan Y, Xiong B.Nicotinamide Mononucleotide Restores the Meiotic Competency of Porcine Oocytes Exposed to Ethylene Glycol Butyl Ether.Front Cell Dev Biol. 2021 Feb 2;9:628580. doi:10.3389/fcell.2021.628580.
  20. Mills et al., 2016, Cell Metabolism 24, 795–806, December 13, 2016 ª 2016 Elsevier Inc. DOI: doi.org/10.1016/j.cmet.2016.09.013.
  21. Gomes AP, Price NL, Ling AJ, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155(7):1624-1638. doi:10.1016/j.cell.2013.11.037.
  22. Empty
  23. Yamamoto T, Byun J, Zhai P, Ikeda Y, Oka S, et al. (2014) Nicotinamide Mononucleotide, an Intermediate of NAD+ Synthesis, Protects the Heart from Ischemia and Reperfusion. PLoS ONE 9(6): e98972. doi:10.1371/journal.pone.0098972.
  24. Empty
  25. de Picciotto NE, Gano LB, Johnson LC, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell. 2016;15(3):522-530. doi:10.1111/acel.12461.
  26. Empty
  27. Keisuke Okabe, Keisuke Yaku, Kazuyuki Tobe, Takashi Nakagawa.Implications of altered NAD metabolism in metabolic disorders.J Biomed Sci, 2019; DOI: 10.1186/s12929-019-0527-8.
  28. Empty
  29. Uddin GM, Youngson NA, Sinclair DA, Morris MJ. Head to Head Comparison of Short-Term Treatment with the NAD(+) Precursor Nicotinamide Mononucleotide (NMN) and 6 Weeks of Exercise in Obese Female Mice. Front Pharmacol. 2016;7:258. Published 2016 Aug 19. doi:10.3389/fphar.2016.00258.
  30. Uchida R, Saito Y, Nogami K, et al.Epigenetic silencing ofLgr5induces senescence of intestinal epithelial organoids during the process of aging [published correction appears in NPJ Aging Mech Dis. 2019 Mar 7;5:5].NPJ Aging Mech Dis. 2018;5:1. Published 2018 Dec 1. doi:10.1038/s41514-018-0031-5
  31. Li Y, Ma X, Li J, et al. Corneal denervation causes epithelial apoptosis through inhibiting NAD. biosynthesis. Invest Ophthalmol Vis Sci. 2019;60:3538–3546.
  32. Yoo KH, Tang JJ, Rashid MA, Cho CH, Corujo-Ramirez A, Choi J, Bae MG, Brogren D, Hawse JR, Hou X, Weroha SJ, Oliveros A, Kirkeby LA, Baur JA, Jang MH. Nicotinamide mononucleotide prevents cisplatin-induced cognitive impairments. Cancer Res. 2021 Mar 26:canres.3290.2020. doi: 10.1158/0008-5472.CAN-20-3290.
  33. Forte M, Bianchi F, Cotugno M, Marchitti S, De Falco E, Raffa S, Stanzione R, Di Nonno F, Chimenti I, Palmerio S, Pagano F, Petrozza V, Micaloni A, Madonna M, Relucenti M, Torrisi MR, Frati G, Volpe M, Rubattu S, Sciarretta S.Pharmacological restoration of autophagy reduces hypertension-related stroke occurrence. Autophagy. 2020 Aug;16(8):1468-1481. doi:10.1080/15548627.2019.1687215. Epub 2019 Nov 12. PMID: 31679456; PMCID: PMC7469607.
  34. Li B, Shi Y, Liu M, Wu F, Hu X, Yu F, Wang C, Ye L. Attenuates of NAD+ impair BMSC osteogenesis and fracture repair through OXPHOS. Stem Cell Res Ther. 2022 Feb 22;13(1):77. doi: 10.1186/s13287-022-02748-9. PMID: 35193674; PMCID: PMC8864833.
  35. Hu M, Xing L, Zhang L, Liu F, Wang S, Xie Y, Wang J, Jiang H, Guo J, Li X, Wang J, Sui L, Li C, Liu D, Liu Z. NAP1L2 drives mesenchymal stem cell senescence and suppresses osteogenic differentiation. Aging Cell. 2022 Jan 15:e13551. doi: 10.1111/acel.13551. Epub ahead of print. PMID: 35032339.
  36. Song J, Li J, Yang F, et al. Nicotinamide mononucleotide promotes osteogenesis and reduces adipogenesis by regulating mesenchymal stromal cells via the SIRT1 pathway in aged bone marrow. Cell Death Dis. 2019;10(5):336. Published 2019 Apr 18. doi:10.1038/s41419-019-1569-2.
  37. Yoo KH, Tang JJ, Rashid MA, Cho CH, Corujo-Ramirez A, Choi J, Bae MG, Brogren D, Hawse JR, Hou X, Weroha SJ, Oliveros A, Kirkeby LA, Baur JA, Jang MH. Nicotinamide mononucleotide prevents cisplatin-induced cognitive impairments. Cancer Res. 2021 Mar 26:canres.3290.2020. doi: 10.1158/0008-5472.CAN-20-3290.
  38. Zhen Yu, Shuai Tong, Can Zhang et al. Nicotinamide mononucleotide enhances the efficacy and persistence of CD19 CAR-T cells via NAD + –Sirt1 axis, 19 April 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1483519/v1].
  39. Khosroshahi AJ, Mokhtari B, Badalzadeh R. Combination of nicotinamide mononucleotide and troxerutin induces full protection against doxorubicin-induced cardiotoxicity by modulating mitochondrial biogenesis and inflammatory response. Mol Biol Rep. 2022 Jul 17. doi: 10.1007/s11033-022-07390-5. Epub ahead of print. PMID: 35842854.
  40. Gan L, Liu D, Liu J, Chen E, Chen C, Liu L, Hu H, Guan X, Ma W, Zhang Y, He Y, Liu B, Tang S, Jiang W, Xue J, Xin H. CD38 deficiency alleviates Ang II-induced vascular remodeling by inhibiting small extracellular vesicle-mediated vascular smooth muscle cell senescence in mice. Signal Transduct Target Ther. 2021 Jun 11;6(1):223. doi: 10.1038/s41392-021-00625-0. PMID: 34112762.
  41. Sun L, Zhang W. Preconditioning of mesenchymal stem cells with ghrelin exerts superior cardioprotection in aged heart through boosting mitochondrial function and autophagy flux. Eur J Pharmacol. 2021 May 2;903:174142. doi: 10.1016/j.ejphar.2021.174142.
  42. Whitson JA, Bitto A, Zhang H, Sweetwyne MT, Coig R, Bhayana S, Shankland EG, Wang L, Bammler TK, Mills KF, Imai SI, Conley KE, Marcinek DJ, Rabinovitch PS. SS-31 and NMN: Two paths to improve metabolism and function in aged hearts. Aging Cell. 2020 Aug 11:e13213. doi: 10.1111/acel.13213. Epub ahead of print. PMID: 32779818.
  43. Hosseini L, Vafaee MS, Badalzadeh R. Melatonin and Nicotinamide Mononucleotide Attenuate Myocardial Ischemia/Reperfusion Injury via Modulation of Mitochondrial Function and Hemodynamic Parameters in Aged Rats. J Cardiovasc Pharmacol Ther. 2020 May;25(3):240-250. doi: 10.1177/1074248419882002.
  44. Zhang R, Shen Y, Zhou L, et al. Short-term administration of Nicotinamide Mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure. J Mol Cell Cardiol. 2017;112:64-73. doi: 10.1016/j.yjmcc.2017.09.001.
  45. Sasaki, L., Hamada, Y., Yarimizu, D. et al. Intracrine activity involving NAD-dependent circadian steroidogenic activity governs age-associated meibomian gland dysfunction. Nat Aging 2, 105–114 (2022). https://doi.org/10.1038/s43587-021-00167-8.
  46. Guo X, Tan S, Wang T, Sun R, Li S, Tian P, Li M, Wang Y, Zhang Y, Yan Y, Dong Z, Yan L, Yue X, Wu Z, Li C, Yamagata K, Gao L, Ma C, Li T, Liang X. NAD+ salvage governs mitochondrial metabolism, invigorating natural killer cell antitumor immunity. Hepatology. 2022 Jul 11. doi: 10.1002/hep.32658. Epub ahead of print. PMID: 35815363.
  47. Nomiyama T, Setoyama D, Yasukawa T, Kang D. Mitochondria Metabolomics Reveals a Role of β-Nicotinamide Mononucleotide Metabolism in Mitochondrial DNA Replication. J Biochem. 2021 Dec 4:mvab136. doi: 10.1093/jb/mvab136. Epub ahead of print. PMID: 34865026.
  48. Hunt NJ, Lockwood GP, Kang SWS, Westwood LJ, Limantoro C, Chrzanowski W, McCourt PAG, Kuncic Z, Le Couteur DG, Cogger VC. Quantum Dot Nanomedicine Formulations Dramatically Improve Pharmacological Properties and Alter Uptake Pathways of Metformin and Nicotinamide Mononucleotide in Aging Mice. ACS Nano. 2021 Feb 24. doi: 10.1021/acsnano.0c09278. Epub ahead of print. PMID: 33626869.
  49. Uddin GM, Youngson NA, Chowdhury SS, Hagan C, Sinclair DA, Morris MJ. Administration of Nicotinamide Mononucleotide (NMN) Reduces Metabolic Impairment in Male Mouse Offspring from Obese Mothers. Cells. 2020 Mar 25;9(4):791. doi: 10.3390/cells9040791.
  50. Kim HW, Ryoo GH, Jang HY, Rah SY, Lee DH, Kim DK, Bae EJ, Park BH. NAD+-boosting molecules suppress mast cell degranulation and anaphylactic responses in mice. Theranostics. 2022 Apr 11;12(7):3316-3328. doi: 10.7150/thno.69684. PMID: 35547746; PMCID: PMC9065190.
  51. Liu J, Zong Z, Zhang W, Chen Y, Wang X, Shen J, Yang C, Liu X, Deng H. Nicotinamide Mononucleotide Alleviates LPS-Induced Inflammation and Oxidative Stress via Decreasing COX-2 Expression in Macrophages. Front Mol Biosci. 2021 Jul 6;8:702107. doi: 10.3389/fmolb.2021.702107. PMID: 34295923; PMCID: PMC8290259.
  52. Niu KM, Bao T, Gao L, Ru M, Li Y, Jiang L, Ye C, Wang S, Wu X. The Impacts of Short-Term NMN Supplementation on Serum Metabolism, Fecal Microbiota, and Telomere Length in Pre-Aging Phase. Front Nutr. 2021 Nov 29;8:756243. doi: 10.3389/fnut.2021.756243. PMID: 34912838; PMCID: PMC8667784.
  53. Xiaonan Wang, Wuejun Hu, Yang Yang, Toshihiro Takata, Takashi Sakurai. Nicotinamide mononucleotide protects against ß-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res, 2016; DOI: 10.1016/j.brainres.2016.04.060.
  54. Chandrasekaran K, Najimi N, Sagi AR, Yarlagadda S, Salimian M, Arvas MI, Hedayat AF, Kevas Y, Kadakia A, Russell JW. NAD+ Precursors Repair Mitochondrial Function in Diabetes and Prevent Experimental Diabetic Neuropathy. Int J Mol Sci. 2022 Apr 28;23(9):4887. doi: 10.3390/ijms23094887. PMID: 35563288; PMCID: PMC9102948.
  55. Stefano Tarantini, Marta Noa Valcarcel-Ares, Peter Toth, Andriy Yabluchanskiy, Zsuzsanna Tucsek, Tamas Kiss, Peter Hertelendy, Michael Kinter, Praveen Ballabh, Zoltan Sule, Eszter Farkas, Joseph A. Baur, David A. Sinclair, Anna Csistzar, Zoltan Ungvari. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function inn aged mice. Redox Biol, 2019; DOI: 10.1016/j.redox.2019.101192.
  56. Tamas Kiss, Priya Balasubramanian, Marta Noa Valcarcel-Ares, Stefano Tarantini, Andriy Yabluchanskiy, Tamas Csipo, Agnes Lipecz, Dora Reglodi, Xin A. Zhang, Ferenc Bari, Eszter Farkas, Anna Csiszar, Zoltan Ungvari. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment. Geroscience, 2019; DOI: 10.1007/s11357-019-00074-2.
  57. Leila Hosseini, Fatemeh Farokhi-Sisakht, Reza Badalzadeh, Aytak Khabbaz, Javad Mahmoudi, Saeed Sadigh-Eteghad. Nicotinamide mononucleotide and melatonin alleviate aging-induced cognitive impairment via modulation of mitochondrial function and apoptosis in the prefrontal cortex and hippocampus. Neuroscience, 2019; DOI: 10.1016/j.neuroscience.2019.09.037.
  58. Klimova N, Fearnow A, Long A, Kristian T. NAD+ precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms. Exp Neurol. 2020;325:113144. doi:10.1016/j.expneurol.2019.113144.
  59. Kiss T, Nyúl-Tóth Á, Balasubramanian P, et al. Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: transcriptional footprint of SIRT1 activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects. Geroscience. 2020;42(2):527-546. doi:10.1007/s11357-020-00165-5.
  60. Chandrasekaran K, Choi J, Arvas MI, Salimian M, Singh S, Xu S, Gullapalli RP, Kristian T, Russell JW. Nicotinamide Mononucleotide Administration Prevents Experimental Diabetes-Induced Cognitive Impairment and Loss of Hippocampal Neurons. Int J Mol Sci. 2020 May 26;21(11):3756. DOI: 10.3390/ijms21113756. PMID: 32466541; PMCID: PMC7313029.
  61. Deng, X., Liang, X., Yang, H., Huang, Z., Huang, X., Liang, C., Kuang, Y., Qin, Y., Lin, F. and Luo, Z. (2020), Nicotinamide mononucleotide (NMN) protects bEnd.3 cells against H2O2‐induced damage via NAMPT and the NF‐κB p65 signalling pathway. FEBS Open Bio. Accepted Author Manuscript. DOI: 10.1002/2211-5463.13067.
  62. Chandrasekaran K, Najimi N, Sagi AR, Yarlagadda S, Salimian M, Arvas MI, Hedayat AF, Kevas Y, Kadakia A, Russell JW. NAD+ Precursors Repair Mitochondrial Function in Diabetes and Prevent Experimental Diabetic Neuropathy. Int J Mol Sci. 2022 Apr 28;23(9):4887. doi: 10.3390/ijms23094887. PMID: 35563288; PMCID: PMC9102948.
  63. Yu M, Zheng X, Cheng F, Shao B, Zhuge Q, Jin K. Metformin, Rapamycin, or Nicotinamide Mononucleotide Pretreatment Attenuate Cognitive Impairment After Cerebral Hypoperfusion by Inhibiting Microglial Phagocytosis. Front Neurol. 2022 Jun 13;13:903565. doi: 10.3389/fneur.2022.903565. PMID: 35769369; PMCID: PMC9234123.
  64. Hu Y, Huang Y, Xing S, Chen C, Shen D, Chen J. Aβ promotes CD38 expression in senescent microglia in Alzheimer’s disease. Biol Res. 2022 Mar 3;55(1):10. doi: 10.1186/s40659-022-00379-1. PMID: 35241173; PMCID: PMC8892694.
  65. Liu X, Dilxat T, Shi Q, Qiu T, Lin J. The combination of nicotinamide mononucleotide and lycopene prevents cognitive impairment and attenuates oxidative damage in D-galactose induced aging models via Keap1-Nrf2 signaling. Gene. 2022 May 15;822:146348. doi: 10.1016/j.gene.2022.146348. Epub 2022 Feb 17. PMID: 35183682.Mode.
  66. Miao Y, Cui Z, Gao Q, Rui R, Xiong B. Nicotinamide Mononucleotide Supplementation Reverses the Declining Quality of Maternally Aged Oocytes. Cell Rep. 2020 Aug 4;32(5):107987. doi: 10.1016/j.celrep.2020.107987. PMID: 32755581.
  67. Wang L, Chen Y, Wei J, Guo F, Li L, Han Z, Wang Z, Zhu H, Zhang X, Li Z, Dai X. Administration of nicotinamide mononucleotide improves oocyte quality of obese mice. Cell Prolif. 2022 Jul 10:e13303. doi: 10.1111/cpr.13303. Epub ahead of print. PMID: 35811338.
  68. Yoshino M, Yoshino J, Kayser BD, Patti G, Franczyk MP, Mills KF, Sindelar M, Pietka T, Patterson BW, Imai SI, Klein S. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science. 2021 Apr 22:eabe9985. doi: 10.1126/science.abe9985. Epub ahead of print. PMID: 33888596.
  69. Masaki Igarashi, Masaomi Miura, Yoshiko Nakagawa-Nagahama et al. Chronic nicotinamide mononucleotide supplementation elevates blood nicotinamide adenine dinucleotide levels and alters muscle motility in healthy old men, 09 June 2021.DOI: 10.21203/rs.3.rs-455083/v1
  70. Katayoshi T, Nakajo T, Tsuji-Naito K. Restoring NAD+ by NAMPT is essential for the SIRT1/p53-mediated survival of UVA- and UVB-irradiated epidermal keratinocytes. J Photochem Photobiol B. 2021 Jun 12;221:112238. doi: 10.1016/j.jphotobiol.2021.112238. Epub ahead of print. PMID: 34130091.
  71. Liao B, Zhao Y, Wang D, Zhang X, Hao X, Hu M. Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: a randomized, double-blind study. J Int Soc Sports Nutr. 2021 Jul 8;18(1):54. doi: 10.1186/s12970-021-00442-4. PMID: 34238308; PMCID: PMC8265078.
  72. Ito N, Takatsu A, Ito H, Koike Y, Yoshioka K, Kamei Y, Imai SI. Slc12a8 in the lateral hypothalamus maintains energy metabolism and skeletal muscle functions during aging. Cell Rep. 2022 Jul 26;40(4):111131. doi: 10.1016/j.celrep.2022.111131. PMID: 35905718.
  73. Empty
  74. Yasuda I, Hasegawa K, Sakamaki Y, Muraoka H, Kawaguchi T, Kusahana E, Ono T, Kanda T, Tokuyama H, Wakino S, Itoh H. Pre-emptive Short-term Nicotinamide Mononucleotide Treatment in a Mouse Model of Diabetic Nephropathy. J Am Soc Nephrol. 2021 Jun 1;32(6):1355-1370. doi: 10.1681/ASN.2020081188.
  75. Ru M, Wang W, Zhai Z, Wang R, Li Y, Liang J, Kothari D, Niu K, Wu X. Nicotinamide mononucleotide supplementation protects the intestinal function in aging mice and D-galactose induced senescent cells. Food Funct. 2022 Jul 18;13(14):7507-7519. doi: 10.1039/d2fo00525e. PMID: 35678708.
  76. Yi M, Ma Y, Zhu S, Luo C, Chen Y, Wang Q, Deng H. Comparative proteomic analysis identifies biomarkers for renal aging. Aging (Albany NY). 2020 Nov 6;12(21):21890-21903. doi: 10.18632/aging.104007. Epub 2020 Nov 6. PMID: 33159023; PMCID: PMC7695359.
  77. Murata MM, Kong X, Moncada E, Chen Y, Imamura H, Wang P, Berns MW, Yokomori K, Digman MA. NAD+ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol Biol Cell. 2019 Sep 15;30(20):2584-2597. doi: 10.1091/mbc.E18-10-0650. Epub 2019 Aug 7. PMID: 31390283; PMCID: PMC6740200.
  78. Mateuszuk Ł, Campagna R, Kutryb-Zając B, Kuś K, Słominska EM, Smolenski RT, Chlopicki S. Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside. Biochem Pharmacol. 2020 Aug;178:114019. doi: 10.1016/j.bcp.2020.114019.
  79. Gao JF, Tang L, Luo F, Zhang YY, Chen L, Ding H, Meng ZD. Nicotinamide mononucleotide ameliorates DNFB-induced atopic dermatitis-like symptoms in mice by blocking activation of ROS-mediated JAK2/STAT5 signaling pathway. Int Immunopharmacol. 2022 Aug;109:108812. doi: 10.1016/j.intimp.2022.108812. Epub 2022 May 6. PMID: 35533554.
  80. Ren C, Hu C, Wu Y, Li T, Zou A, Yu D, Shen T, Cai W, Yu J. Nicotinamide Mononucleotide Ameliorates Cellular Senescence and Inflammation Caused by Sodium Iodate in RPE. Oxid Med Cell Longev. 2022 Jul 18;2022:5961123. doi: 10.1155/2022/5961123. PMID: 35898618; PMCID: PMC9313989.
  81. Hasegawa K, Sakamaki Y, Tamaki M, Wakino S. Nicotinamide mononucleotide ameliorates adriamycin-induced renal damage by epigenetically suppressing the NMN/NAD consumers mediated by Twist2. Sci Rep. 2022 Aug 12;12(1):13712. doi: 10.1038/s41598-022-18147-2. PMID: 35962139; PMCID: PMC9374671.
  82. Chang TM, Yang TY, Huang HC. Nicotinamide Mononucleotide and Coenzyme Q10 Protects Fibroblast Senescence Induced by Particulate Matter Preconditioned Mast Cells. Int J Mol Sci. 2022 Jul 7;23(14):7539. doi: 10.3390/ijms23147539. PMID: 35886889; PMCID: PMC9319393.
  83. Ma D, Hu L, Wang J, Luo M, Liang A, Lei X, Liao B, Li M, Xie M, Li H, Gong Y, Zi D, Li X, Chen X, Liao X. Nicotinamide mononucleotide improves spermatogenic function in streptozotocin-induced diabetic mice via modulating the glycolysis pathway. Acta Biochim Biophys Sin (Shanghai). 2022 Jul 25. doi: 10.3724/abbs.2022099. Epub ahead of print. PMID: 35929593.
  84. Takeshi Katayoshi, Sachi Uehata, Noe Nakashima et al. Nicotinamide adenine dinucleotide metabolism and arterial stiffness after long-term nicotinamide mononucleotide supplementation: a randomized, double-blind, placebo-controlled trial, 29 July 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1802944/v1].
  85. Kimura S, Ichikawa M, Sugawara S, et al. (September 05, 2022) Nicotinamide Mononucleotide Is Safely Metabolized and Significantly Reduces Blood Triglyceride Levels in Healthy Individuals. Cureus 14(9): e28812. doi:10.7759/cureus.28812.
  86. Pan Huang, Xuxin Wang, Siyu Wang, Zhipeng Wu, Zhengrong Zhou, Genbao Shao, Caifang Ren, Meiqian Kuang, Yan Zhou, Anqi Jiang, Weihong Tang, Jianye Miao, Xin Qian, Aihua Gong, Min Xu. Treatment of inflammatory bowel disease: Potential effect of NMN on intestinal barrier and gut microbiota. Current Research in Food Science, Volume 5, 2022, Pages 1403 1411. ISSN 2665-9271. https://doi.org/10.1016/j.crfs.2022.08.011.
  87. Aflatounian A, Paris VR, Richani D, Edwards MC, Cochran BJ, Ledger WL, Gilchrist RB, Bertoldo MJ, Wu LE, Walters KA. Declining muscle NAD+ in a hyperandrogenism PCOS mouse model: Possible role in metabolic dysregulation. Mol Metab. 2022 Sep 9;65:101583. doi: 10.1016/j.molmet.2022.101583. Epub ahead of print. PMID: 36096453; PMCID: PMC9490589.
  88. Setoyama, Daiki and Nomiyama, Tomoko and Yamamoto, Masamichi and Kang, Dongchon, β-Nicotinamide Mononucleotide Supplementation Increases the Nucleotide Pool Through Multiple Pathways, Improving Mitochondrial DNA Metabolism. Available at SSRN: https://ssrn.com/abstract=4227260 or http://dx.doi.org/10.2139/ssrn.4227260.
  89. Lee D, Tomita Y, Miwa Y, Shinojima A, Ban N, Yamaguchi S, Nishioka K, Negishi K, Yoshino J, Kurihara T. Nicotinamide Mononucleotide Prevents Retinal Dysfunction in a Mouse Model of Retinal Ischemia/Reperfusion Injury. International Journal of Molecular Sciences. 2022; 23(19):11228. https://doi.org/10.3390/ijms231911228.
  90. Luo C, Ding W, Yang C, Zhang W, Liu X, Deng H. Nicotinamide Mononucleotide Administration Restores Redox Homeostasis via the Sirt3-Nrf2 Axis and Protects Aged Mice from Oxidative Stress-Induced Liver Injury. J Proteome Res. 2022 Jul 1;21(7):1759-1770. doi: 10.1021/acs.jproteome.2c00167. Epub 2022 Jun 14. PMID: 35699728.
  91. Jin R, Niu C, Wu F, Zhou S, Han T, Zhang Z, Li E, Zhang X, Xu S, Wang J, Tian S, Chen W, Ye Q, Cao C, Cheng L. DNA damage contributes to age-associated differences in SARS-CoV-2 infection. Aging Cell. 2022 Oct 18:e13729. doi: 10.1111/acel.13729. Epub ahead of print. PMID: 36254583.
  92. Zhao X, Zhang M, Wang J, Ji K, Wang Y, Sun X, Xu C, Wang Q, He N, Song H, Du L, Wang F, Huang H, Liu Y, Liu Q. NMN ameliorated radiation induced damage in NRF2-deficient cell and mice via regulating SIRT6 and SIRT7. Free Radic Biol Med. 2022 Oct 14:S0891-5849(22)00897-8. doi: 10.1016/j.freeradbiomed.2022.10.267. Epub ahead of print. PMID: 36252808.
  93. Shen X, Wu B, Jiang W, Li Y, Zhang Y, Zhao K, Nie N, Gong L, Liu Y, Zou X, Liu J, Jin J, Ouyang H. Scale bar of aging trajectories for screening personal rejuvenation treatments. Comput Struct Biotechnol J. 2022 Oct 21;20:5750-5760. doi: 10.1016/j.csbj.2022.10.021. PMID: 36382193; PMCID: PMC9619353.
  94. Wong W, Crane ED, Zhang H, Li J, Day TA, Green AE, Menzies KJ, Crane JD. Pgc-1α controls epidermal stem cell fate and skin repair by sustaining NAD+ homeostasis during aging. Mol Metab. 2022 Nov;65:101575. doi: 10.1016/j.molmet.2022.101575. Epub 2022 Aug 17. PMID: 35987498; PMCID: PMC9463389.
  95. Yi L, Maier AB, Tao R, Lin Z, Vaidya A, Pendse S, Thasma S, Andhalkar N, Avhad G, Kumbhar V. The efficacy and safety of β-nicotinamide mononucleotide (NMN) supplementation in healthy middle-aged adults: a randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trial. Geroscience. 2022 Dec 8. doi: 10.1007/s11357-022-00705-1. Epub ahead of print. PMID: 36482258.
  96. Lee, D.; Tomita, Y.; Miwa, Y.; Jeong, H.; Shinojima, A.; Ban, N.; Yamaguchi, S.; Nishioka, K.; Negishi, K.; Yoshino, J.; Kurihara, T. Nicotinamide Mononucleotide Protects against Retinal Dysfunction in a Murine Model of Carotid Artery Occlusion. Int. J. Mol. Sci.2022,23, 14711. https://doi.org/10.3390/ijms232314711.
  97. Tian Y, Zhu CL, Li P, Li HR, Liu Q, Deng XM, Wang JF. Nicotinamide Mononucleotide Attenuates LPS-Induced Acute Lung Injury With Anti-Inflammatory, Anti-Oxidative and Anti-Apoptotic Effects. J Surg Res. 2022 Nov 5;283:9-18. doi: 10.1016/j.jss.2022.09.030. Epub ahead of print. PMID: 36347171.
  98. ZHAO, B., Liu, C., Qiang, L., Liu, J., Qiu, Z., Zhang, Z., Zhang, J., Li, Y., & Zhang, M. (2022). Clinical observation of the effect of nicotinamide mononucleotide on the improvement of insomnia in middle-aged and old adults. American Journal of Translational Medicine, 6(4), 167–176.
  99. Wang H, Sun Y, Pi C, Yu X, Gao X, Zhang C, Sun H, Zhang H, Shi Y, He X. Nicotinamide Mononucleotide Supplementation Improves Mitochondrial Dysfunction and Rescues Cellular Senescence by NAD+/Sirt3 Pathway in Mesenchymal Stem Cells. International Journal of Molecular Sciences. 2022; 23(23):14739. https://doi.org/10.3390/ijms232314739.
  100. Margier M, Kuehnemann C, Hulo N, Morales J, Ashok Kumaar PV, Cros C, Cannelle H, Charmetant J, Verdin E, Canault M, Grozio A. Nicotinamide Mononucleotide Administration Prevents Doxorubicin-Induced Cardiotoxicity and Loss in Physical Activity in Mice. Cells. 2022 Dec 27;12(1):108. doi: 10.3390/cells12010108. PMID: 36611902; PMCID: PMC9818647.
  101. Wang L, Zhao M, Qian R, Wang M, Bao Q, Chen X, Du W, Zhang L, Ye T, Xie Y, Zhang B, Peng L, Yao Y. Nicotinamide Mononucleotide Ameliorates Silica-Induced Lung Injury through the Nrf2-Regulated Glutathione Metabolism Pathway in Mice. Nutrients. 2023; 15(1):143. https://doi.org/10.3390/nu15010143.
  102. Jiang Y, Luo Z, Gong Y, Fu Y, Luo Y. NAD+ supplementation limits triple-negative breast cancer metastasis via SIRT1-P66Shc signaling. Oncogene. 2023 Jan 23. doi: 10.1038/s41388-023-02592-y. Epub ahead of print. PMID: 36690678.
  103. Fang D, Xu T, Sun J, Shi J, Li F, Yin Y, Wang Z, Liu Y. Nicotinamide Mononucleotide Ameliorates Sleep Deprivation-Induced Gut Microbiota Dysbiosis and Restores Colonization Resistance against Intestinal Infections. Adv Sci (Weinh). 2023 Jan 25:e2207170. doi: 10.1002/advs.202207170. Epub ahead of print. PMID: 36698264.
  104. Zhu X, Cheng J, Yu J, Liu R, Ma H, Zhao Y. Nicotinamide mononucleotides alleviated neurological impairment via anti-neuroinflammation in traumatic brain injury. Int J Med Sci 2023; 20(3):307-317. doi:10.7150/ijms.80942.
  105. Rashid MA, Oliveros A, Kim YS, Jang MH. Nicotinamide Mononucleotide Prevents Cisplatin-Induced Mitochondrial Defects in Cortical Neurons Derived from Human Induced Pluripotent Stem Cells. Brain Plast. 2022 Dec 20;8(2):143-152. doi: 10.3233/BPL-220143. PMID: 36721392; PMCID: PMC9837732.
  106. Wu K, Li B, Ma Y, Tu T, Lin Q, Zhu J, Zhou Y, Liu N, Liu Q. Nicotinamide mononucleotide attenuates HIF-1α activation and fibrosis in hypoxic adipose tissue via NAD+/SIRT1 axis. Front Endocrinol (Lausanne). 2023 Jan 26;14:1099134. doi: 10.3389/fendo.2023.1099134. PMID: 36777361; PMCID: PMC9909340.
  107. Jiang Y, Wang D, Zhang C, Jiao Y, Pu Y, Cheng R, Li C, Chen Y. Nicotinamide mononucleotide restores oxidative stress-related apoptosis of oocyte exposed to benzyl butyl phthalate in mice. Cell Prolif. 2023 Feb 9:e13419. doi: 10.1111/cpr.13419. Epub ahead of print. PMID: 36756972.
  108. Montali I, Berti CC, Morselli M, Acerbi G, Barili V, Pedrazzi G, Montanini B, Boni C, Alfieri A, Pesci M, Loglio A, Degasperi E, Borghi M, Perbellini R, Penna A, Laccabue D, Rossi M, Vecchi A, Tiezzi C, Reverberi V, Boarini C, Abbati G, Massari M, Lampertico P, Missale G, Ferrari C, Fisicaro P. Deregulated intracellular pathways define novel molecular targets for HBV-specific CD8 T cell reconstitution in chronic hepatitis B. J Hepatol. 2023 Mar 7:S0168-8278(23)00167-8. doi: 10.1016/j.jhep.2023.02.035. Epub ahead of print. PMID: 36893853.