De allmänna hälsofördelarna med NMN (nikotinamidmononukleotid)

NMN är en molekyl som har uppmärksammats av det vetenskapliga samfundet på grund av dess potentiella hälsofördelar. Dessa inkluderar:

Benreparation

Nikotinamidmononukleotid (NMN) spelar en viktig roll vid benreparation. Det bidrar till produktionen av kollagen, ett protein som ger struktur och styrka åt våra ben. Genom att stimulera kollagenproduktionen kan NMN hjälpa till att reparera skadade ben och förebygga bensjukdomar. NMN är därför en potentiell allierad för att bevara benhälsan och bekämpa sjukdomar som osteoporos. Dessutom kan NM:s roll i energiomsättningen stödja den energiintensiva processen för reparation och omformning av skelettet. Detta är särskilt viktigt när vi åldras och bentätheten naturligt minskar. Därför är NMN:s roll vid benreparation inte bara avgörande för sårläkning, utan även för att upprätthålla skelettets allmänna hälsa.

Bekämpning av cancer

Ny forskning tyder på att NMN kan bidra till att bekämpa cancer. Det gör det genom att öka kroppens immunförsvar och hämma tillväxten av cancerceller. Detta är ett lovande forskningsområde som kan leda till nya cancerbehandlingar. NMN:s potentiella roll i förebyggandet och behandlingen av cancer utgör en spännande gräns inom onkologiforskningen och ger hopp om effektivare strategier i kampen mot denna sjukdom. Dessutom kan NMN:s roll i DNA-reparation bidra till att förhindra genetiska mutationer som ofta leder till cancer, vilket ger ytterligare ett lager till dess potential som cancerbekämpande medel.

Kardiovaskulär hälsa

NMN kan främja kardiovaskulär hälsa på ett antal olika sätt. Det kan förbättra blodcirkulationen, minska inflammation och skydda mot hjärtsjukdomar. Genom att stödja hälsan i ditt kardiovaskulära system kan NMN bidra till att skydda mot hjärtsjukdomar och förbättra den övergripande hjärtfunktionen. Det är därför en kraftfull allierad för ett friskt hjärta och ett robust cirkulationssystem. Dessutom kan NMN:s roll i energimetabolismen tillgodose hjärtats höga energibehov och därmed bidra till kardiovaskulär hälsa.

DNA-reparation

NMN bidrar till DNA-reparation, en viktig process som reparerar skador på DNA-molekylen. Genom att förbättra denna process kan NMN bidra till att upprätthålla genetisk stabilitet och förebygga sjukdomar. Detta är avgörande för att förhindra mutationer som kan leda till sjukdomar som cancer. Genom sin roll i DNA-reparation stöder NMN integriteten hos vårt genetiska material, vilket bidrar till den övergripande cellhälsan. Genom att främja DNA-reparation kan NMN dessutom bidra till att bekämpa effekterna av åldrande och miljöskador på vårt DNA, vilket potentiellt kan bromsa åldrandeprocessen och minska risken för åldersrelaterade sjukdomar.

Ögonskydd

NMN har visat sig ha betydande positiva effekter på ögonhälsan. Det kan skydda ögonen genom att minska oxidativ stress, en viktig orsak till åldersrelaterade ögonsjukdomar. Oxidativ stress kan skada näthinnan och leda till sjukdomar som makuladegeneration och grå starr. Genom att minska oxidativ stress kan NMN bidra till att skydda ögonen mot dessa tillstånd. Dessutom kan NMN:s roll i energimetabolismen tillgodose ögats höga energibehov, vilket bidrar till den allmänna ögonhälsan. Därför är NMN:s roll för att skydda ögonen inte bara avgörande för att bevara synen, utan också för att förhindra uppkomsten av åldersrelaterade ögonsjukdomar.

Stärka immunförsvaret

NMN kan stärka immunförsvaret genom att öka aktiviteten hos immunceller. Detta kan bidra till att skydda mot infektion och sjukdom. Ett starkt immunförsvar är viktigt för att bekämpa sjukdomar och hålla sig frisk. Dessutom kan NMN:s roll i energimetabolismen stödja de energikrävande processerna i immunsystemet, vilket ytterligare förbättrar immunförsvaret. Genom att stödja immunfunktionen kan NMN bidra till att upprätthålla allmän hälsa och välbefinnande, vilket gör det till ett värdefullt tillskott för dem som vill öka sitt immunförsvar.

Livslängd

NMN är kopplat till lång livslängd på grund av sin roll i energimetabolism och DNA-reparation. Genom att öka nivåerna av NAD+, kan det bidra till att bromsa åldringsprocessen. Detta kan potentiellt förlänga livslängden och förbättra livskvaliteten för äldre. Genom att främja DNA-reparation och minska oxidativ stress kan NMN dessutom bekämpa den cellskada som bidrar till åldrande, vilket ytterligare främjar livslängden. NMN:s potentiella roll för att främja lång livslängd går därför längre än att bara förlänga livslängden - det kan också förbättra kvaliteten på dessa extra år.

Metabolism

NMN spelar en nyckelroll i energimetabolismen. Det hjälper till att omvandla mat till energi, vilket stöder den övergripande metaboliska hälsan. Denna roll är avgörande för att upprätthålla energinivåer, stödja fysisk aktivitet och främja hälsosam viktkontroll. Dessutom kan NMN: s roll för att öka NAD + -nivåerna förbättra cellulär metabolism, vilket i sin tur stöder energiproduktion. Därför är NMN:s roll i ämnesomsättningen inte bara avgörande för att tillhandahålla den energi vi behöver för att fungera, utan också för att stödja övergripande hälsa och välbefinnande.

Förbättrar den kognitiva funktionen

NMN kan förbättra den kognitiva funktionen genom att öka hjärnans energiomsättning och skydda mot neurodegenerativa sjukdomar. Hjärnan är ett energikrävande organ, och NMN:s roll i energimetabolismen kan tillgodose hjärnans höga energibehov och därigenom bidra till den kognitiva funktionen. Dessutom kan NMN:s roll i DNA-reparation och minskning av oxidativ stress skydda mot neuronal skada som kan leda till kognitiv nedgång. Därför är NMN:s roll för att förbättra den kognitiva funktionen inte bara avgörande för att bibehålla mental skärpa, utan också för att förhindra uppkomsten av neurodegenerativa sjukdomar.

Förbättrad fertilitet

Forskning tyder på att NMN kan förbättra fertiliteten genom att skydda äggkvaliteten och förbättra den reproduktiva hälsan. NMN:s roll i DNA-reparation kan bidra till att upprätthålla den genetiska integriteten hos ägg, vilket är avgörande för fertiliteten. Dessutom kan NMN:s roll i energimetabolismen stödja energikrävande reproduktiva processer, vilket ytterligare förbättrar fertiliteten. Därför går NMN:s potentiella roll för att förbättra fertiliteten längre än att bara öka chanserna för befruktning - det kan också bidra till hälsan hos framtida generationer.

Hud och muskler

NMN kan gynna hud- och muskelhälsan genom att stimulera kollagenproduktionen och förbättra energimetabolismen. Kollagen är ett protein som ger struktur och styrka till hud och muskler, och NMN:s roll i kollagenproduktionen kan bidra till hud- och muskelhälsa. Dessutom kan NMN: s roll i energimetabolismen stödja de energiintensiva processerna för underhåll och reparation av hud och muskler. Därför är NMN:s roll i hud- och muskelhälsan inte bara avgörande för att bibehålla fysisk styrka och utseende, utan även för allmän hälsa och välbefinnande.

Organhälsa

NMN kan bidra till organhälsa genom att förbättra energimetabolismen och minska oxidativ stress. Organ är energikrävande vävnader och NMN:s roll i energimetabolismen kan tillgodose organens höga energibehov, vilket bidrar till deras hälsa. Dessutom kan NMN:s roll för att minska oxidativ stress skydda organ från skador och därigenom bidra till deras hälsa. Därför är NMN:s roll för organhälsan inte bara avgörande för att upprätthålla funktionen hos enskilda organ, utan även för den allmänna hälsan och välbefinnandet.

Mekanism

NMN verkar genom att öka nivåerna av NAD+ i kroppen. NAD+ är ett viktigt koenzym som driver metaboliska processer och påverkar ett brett spektrum av system, inklusive energimetabolism, DNA-reparation och cellöverlevnad. NAD+-nivåerna sjunker dock naturligt med åldern, vilket leder till metabolisk dysfunktion och en ökad risk för sjukdomar. Genom att komplettera med NMN kan vi öka våra NAD+-nivåer, vilket kan förbättra hälsan och livslängden.

Dessa fördelar stöds av mer än 100 vetenskapliga studier, som vi kommer att återkomma till senare i denna artikel.

Kemisk struktur för NMN

Nikotinamidmononukleotid (NMN) är en nukleotid som härrör från ribos och nikotinamid. Liksom nikotinamidribosid är NMN ett derivat av niacin, och människor har enzymer som kan använda NMN för att generera nikotinamid-adenindinukleotid (NADH).

NMN består av en nikotinamidmolekyl, en ribos och en fosfatgrupp. Ribosen är ett enkelt socker som är viktigt för produktionen av ATP, den huvudsakliga energibäraren i celler, medan fosfatgruppen förstärker molekylens stabilitet och stöder dess roll i biosyntesen av NAD+.


"NMN består av en nikotinamidmolekyl, en ribos och en fosfatgrupp."

Denna unika struktur gör att NMN kan spela en avgörande roll för energiproduktionen i kroppen. Det spelar en nyckelroll i skapandet av NAD+, ett koenzym som spelar en viktig roll i överföringen av energi i celler och stöder cellulär metabolism.


"NMN är en nyckelspelare vid bildandet av NAD+, ett koenzym som spelar en viktig roll vid energiöverföring i celler och stöder cellmetabolismen"

Vilka livsmedel innehåller NMN?

NMN, eller nikotinamidmononukleotid, är en kraftfull förening som kan hittas naturligt i en mängd olika livsmedelskällor. Dessa inkluderar edamame, broccoli, kål, gurka, avokado, tomater och rå nötkött. Till exempel är edamame, en beredning av omogna sojabönor i baljan, känd för sin höga koncentration av NMN. På samma sätt är grönsaker som broccoli och kål rika på NMN. Frukter som avokado och tomater innehåller också NMN, vilket gör dem till ett utmärkt tillskott till din kost om du vill öka ditt NMN-intag. Även vissa typer av kött, t.ex. råbiff, innehåller NMN. Det är dock viktigt att notera att även om dessa livsmedel innehåller NMN, är nivåerna relativt låga och du skulle behöva konsumera dem i stora mängder för att se en signifikant ökning av NMN-nivåerna i kroppen. Det är därför många människor väljer NMN-tillskott, såsom de som erbjuds av C60 France, för att säkerställa att de får en effektiv dos.

I resten av den här artikeln kommer vi att gå in mer i detalj på de specifika hälsofördelarna med NMN, som stöds av vetenskapliga studier.

Lista över forskning om NMN

I denna tabell förtecknas de viktigaste vetenskapliga studierna av de positiva hälsoeffekterna av nikotinamidmononukleotid (NMN).

Forskningskategori Sammanfattning / Slutsats Djur Människa
Reparation av ben
  • Föryngrar stamceller från benmärg och främjar benbildning. 2, 34, 35, 36
Bekämpar cancer
  • Ökar den tumörhämmande effekten av immunterapier. 3, 38, 46
  • Minskar de toxiska biverkningarna av kemoterapier. 37, 39, 92, 100, 105
  • Hämmar cancertillväxt. 102
Kardiovaskulär
  • Återställer hjärtats och blodkärlens funktioner. 4, 23, 25, 40, 42, 78, 84
  • Skyddar hjärtat mot skador efter en hjärtattack. 41, 43
  • Förebygger hjärtsvikt genom att främja friska mitokondrier. 44
Reparation av DNA
  • Förbättrar mekanismerna för DNA-reparation. 18
Skydd av ögonen
  • Hjälper ögonen att återhämta sig från skador. 6, 31, 80, 89, 96
  • Förbättrar torra ögon genom att minska inflammation och öka oljeutsöndringen. 17, 45
Stimulerar immunförsvaret
  • Främjar läkning av covid-19. 7
  • Hämmar infektion av covid-19. 91
  • Minskar allvarliga allergiska reaktioner. 50
  • Minskar inflammation genom att dämpa aktiveringen av immunceller. 51
  • Minskar inflammation i fettvävnad. 106
  • Bevarar immuncellernas funktion mot hepatit B. 108
Lång livslängd
  • Fördubblar livslängden. 8
  • Återställer kardiovaskulär, kognitiv och metabolisk nedgång. 20
  • Fördubblar telomerlängden. 5, 52
  • Minskar den biologiska åldern. 93
  • Förbättrar sömnkvaliteten. 98
  • Föryngrar stamceller. 99
Metabolism
  • Förbättrar insulinkänsligheten och glukosmetabolismen. 9, 27, 48, 49, 87
  • Förbättrar energiproduktionen genom att föryngra mitokondrierna.21
  • Minskar mängden fett som cirkulerar i blodet. 85
Kognitiv funktion
  • Förbättrar kognitiva brister och hjärnabnormaliteter vid Alzheimers sjukdom. 10, 53, 64
  • Förbättrar åldersrelaterad kognitiv nedsättning och skyddar mot skador på blodkärl och hjärna. 55, 56, 57, 59, 61, 62, 63, 65, 104
  • Främjar återhämtningen
  • Förbättrar återhämtningen av hjärnans funktion efter blödning och stroke. 12, 58
  • Skyddar mot neurodegeneration och kognitiv försämring i samband med diabetes. 60
  • Reducerar stroke som orsakas av hög saltkonsumtion. 33
  • Minskar depressivt beteende. 11
Förbättrar fertiliteten
  • Förbättrar fertiliteten och motverkar åldersrelaterad försämring av oocyternas (äggens) kvalitet. 13 , 66 , 83
  • Skyddar oocyter mot miljögifter. 19, 107
Peau och muskler
  • Ökar muskelkraften och förbättrar uthålligheten vid ansträngning. 69, 71, 72, 95
  • Protège mot åldrande av hud. 70, 79, 82
  • Favorisera cikatrisering av plack. 94
Organens hälsa
  • Reducerar leverskador orsakade av alkohol. 14
  • Reducerar ärrbildning i levern. 16
  • Skydd mot njurskador. 15, 74, 81, 90
  • Regenererar åldersrelaterad försämring av tarmfunktionen. 75, 76, 86
  • Skyddar mot lungskador. 97, 101
  • Skyddar mot organinfektioner. 103
Mekanism
  • Ett protein som transporterar NMN in i cellerna har identifierats. 1
  • Inducerar en metabolisk förändring i skadade celler för att främja överlevnad. 77
  • Ökar produktionen av nukleotider (byggstenar i DNA) i mitokondrierna. 88

Referens för vetenskapliga studier om NMN

  1. Alessia Grozio, Kathryn F. Mills, Jun Yoshino, Santina Bruzzone, Giovanna Sociali, Kyohei Tokizane, Hanyue Cecilia Lei, Richard Cunningham, Yo Sasaki, Marie E. Migaud, Shin-ichiro Imai.Slc12a8 is a nicotinamide mononucleotide transporter.Nat Metab, 2019; DOI:10.1038/s42255-018-0009-4.
  2. Huang RX, Tao J. Nicotinamide mononucleotide attenuates glucocorticoid-induced osteogenic inhibition by regulating the SIRT1/PGC-1α signaling pathway.Mol Med Rep. 2020;22(1):145-154. doi:10.3892/mmr.2020.11116
  3. Lv H, Lv G, Chen C, Zong Q, Jiang G, Ye D, Cui X, He Y, Xiang W, Han Q, Tang L, Yang W, Wang H.NAD+Metabolism Maintains Inducible PD-L1 Expression to Drive Tumor Immune Evasion.Cell Metab. 2020 Nov 9.DOI:10.1016/j.cmet.2020.10.021
  4. Martin AS, Abraham DM, Hershberger KA, et al. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model.JCI Insight. 2017;2(14):e93885. Published 2017 Jul 20. doi:10.1172/jci.insight.93885
  5. Hisayuki Amano, Arindam Chaudhury, Cristian Rodriguez-Aguayo, Lan Lu, Viktor Akhanov, Andre Catic, Yury V. Popov, Eric Verdin, Hannah Johnson, Fabio Stossi, David A. Sinclair, Eiko Nakamaru-Ogiso, Gabriel Lopez-Berestein, Jeffrey T. Chang, Joel R. Neilson, Alan Meeker, Milton Finegold, Joseph A. Baur, Ergun Sahin.Telomere dysfunction induces sirtuin repression that drives telomere-dependent disease.Cell Metab, 2019; DOI:10.1016/j.cmet.2019.03.001.
  6. Chen X, Amorim JA, Moustafa GA, Lee JJ, Yu Z, Ishihara K, Iesato Y, Barbisan P, Ueta T, Togka KA, Lu L, Sinclair DA, Vavvas DG. Neuroprotective effects and mechanisms of action of nicotinamide mononucleotide (NMN) in a photoreceptor degenerative model of retinal detachment. Aging (Albany NY). 2020 Dec 29;12.doi: 10.18632/aging.202453. Epub ahead of print. PMID: 33373320.
  7. Omran HM, Almaliki MS.Influence of NAD+ as an ageing-related immunomodulator on COVID 19 infection: A hypothesis. J Infect Public Health. 2020 Sep;13(9):1196-1201. doi:10.1016/j.jiph.2020.06.004. Epub 2020 Jun 7. PMID: 32534944; PMCID: PMC7275989.
  8. Yoshida M, Satoh A, Lin JB, et al. Extracellular Vesicle-Contained eNAMPT Delays Aging and Extends Lifespan in Mice. Cell Metab. 2019;30(2):329-342.e5. doi:10.1016/j.cmet.2019.05.015
  9. Yoshino M, Yoshino J, Kayser BD, Patti G, Franczyk MP, Mills KF, Sindelar M, Pietka T, Patterson BW, Imai SI, Klein S. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science. 2021 Apr 22:eabe9985. doi: 10.1126/science.abe9985. Epub ahead of print. PMID: 33888596.
  10. Sanli Xing, Yiran Hu, Xujiao Huang, Dingzhu Shen, Chuan Chen.Nicotinamide phosphoribosyl transferase related signalling pathway in early Alzheimer’s disease mouse models.Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China (2019)doi:10.3892/mmr.2019.10782
  11. Xie X, Yu C, Zhou J, et al. Nicotinamide mononucleotide ameliorates the depression-like behaviors and is associated with attenuating the disruption of mitochondrial bioenergetics in depressed mice.J Affect Disord. 2020;263:166-174. doi:10.1016/j.jad.2019.11.147
  12. Liang Shu, Xiaolei Shen, Yaxue Zhao, Xinwei He, Jiawen Yin, Jingjing Su, Qiang Li, Jianren Liu.Mechanisms of transformation of nicotinamide mononucleotides to cerebral infarction hemorrhage based on MCAO model.Saudi J Biol Sci, 2020; DOI:10.1016/j.sjbs.2019.12.023.
  13. Yang L, Lin X, Tang H, Fan Y, Zeng S, Jia L, Li Y, Shi Y, He S, Wang H, Hu Z, Gong X, Liang X, Yang Y, Liu X. Mitochondrial DNA mutation exacerbates female reproductive aging via impairment of the NADH/NAD+ redox.Aging Cell. 2020 Sep;19(9):e13206. doi: 10.1111/acel.13206.
  14. Assiri MA, Ali HR, Marentette JO, Yun Y, Liu J, Hirschey MD, Saba LM, Harris PS, and Fritz KS.Investigating RNA expression profiles altered by nicotinamide mononucleotide therapy in a chronic model of alcoholic liver disease.Hum Genomics, 2019; DOI:10.1186/s40246-019-0251-1.
  15. Jia Y, Kang X, Tan L, Ren Y, Qu L, Tang J, Liu G, Wang S, Xiong Z and Yang L (2021)Nicotinamide Mononucleotide Attenuates Renal Interstitial Fibrosis After AKI by Suppressing Tubular DNA Damage and Senescence.Front. Physiol.12:649547. doi:10.3389/fphys.2021.649547
  16. Zong Z, Liu J, Wang N, Yang C, Wang Q, Zhang W, Chen Y, Liu X, Deng H.Nicotinamide mononucleotide inhibits hepatic stellate cell activation to prevent liver fibrosis via promoting PGE2degradation. Free Radic Biol Med. 2020 Nov 19:S0891-5849(20)31626-9. doi:10.1016/j.freeradbiomed.2020.11.014. Epub ahead of print. PMID: 33220424.
  17. Meng YF, Pu Q, Dai SY, Ma Q, Li X, Zhu W.Nicotinamide Mononucleotide Alleviates Hyperosmolarity-Induced IL-17a Secretion and Macrophage Activation in Corneal Epithelial Cells/Macrophage Co-Culture System. J Inflamm Res. 2021 Feb 22;14:479-493. doi:10.2147/JIR.S292764. PMID: 33658825; PMCID: PMC7917392.
  18. Li J, Bonkowski MS, Moniot S, et al. A conserved NAD+ binding pocket that regulates protein-protein interactions during aging. Science. 2017;355(6331):1312-1317. doi:10.1126/science.aad8242
  19. Miao Y, Li X, Shi X, Gao Q, Chen J, Wang R, Fan Y, Xiong B.Nicotinamide Mononucleotide Restores the Meiotic Competency of Porcine Oocytes Exposed to Ethylene Glycol Butyl Ether.Front Cell Dev Biol. 2021 Feb 2;9:628580. doi:10.3389/fcell.2021.628580.
  20. Mills et al., 2016, Cell Metabolism 24, 795–806, December 13, 2016 ª 2016 Elsevier Inc. DOI: doi.org/10.1016/j.cmet.2016.09.013.
  21. Gomes AP, Price NL, Ling AJ, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155(7):1624-1638. doi:10.1016/j.cell.2013.11.037.
  22. Empty
  23. Yamamoto T, Byun J, Zhai P, Ikeda Y, Oka S, et al. (2014) Nicotinamide Mononucleotide, an Intermediate of NAD+ Synthesis, Protects the Heart from Ischemia and Reperfusion. PLoS ONE 9(6): e98972. doi:10.1371/journal.pone.0098972.
  24. Empty
  25. de Picciotto NE, Gano LB, Johnson LC, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell. 2016;15(3):522-530. doi:10.1111/acel.12461.
  26. Empty
  27. Keisuke Okabe, Keisuke Yaku, Kazuyuki Tobe, Takashi Nakagawa.Implications of altered NAD metabolism in metabolic disorders.J Biomed Sci, 2019; DOI: 10.1186/s12929-019-0527-8.
  28. Empty
  29. Uddin GM, Youngson NA, Sinclair DA, Morris MJ. Head to Head Comparison of Short-Term Treatment with the NAD(+) Precursor Nicotinamide Mononucleotide (NMN) and 6 Weeks of Exercise in Obese Female Mice. Front Pharmacol. 2016;7:258. Published 2016 Aug 19. doi:10.3389/fphar.2016.00258.
  30. Uchida R, Saito Y, Nogami K, et al.Epigenetic silencing ofLgr5induces senescence of intestinal epithelial organoids during the process of aging [published correction appears in NPJ Aging Mech Dis. 2019 Mar 7;5:5].NPJ Aging Mech Dis. 2018;5:1. Published 2018 Dec 1. doi:10.1038/s41514-018-0031-5
  31. Li Y, Ma X, Li J, et al. Corneal denervation causes epithelial apoptosis through inhibiting NAD. biosynthesis. Invest Ophthalmol Vis Sci. 2019;60:3538–3546.
  32. Yoo KH, Tang JJ, Rashid MA, Cho CH, Corujo-Ramirez A, Choi J, Bae MG, Brogren D, Hawse JR, Hou X, Weroha SJ, Oliveros A, Kirkeby LA, Baur JA, Jang MH. Nicotinamide mononucleotide prevents cisplatin-induced cognitive impairments. Cancer Res. 2021 Mar 26:canres.3290.2020. doi: 10.1158/0008-5472.CAN-20-3290.
  33. Forte M, Bianchi F, Cotugno M, Marchitti S, De Falco E, Raffa S, Stanzione R, Di Nonno F, Chimenti I, Palmerio S, Pagano F, Petrozza V, Micaloni A, Madonna M, Relucenti M, Torrisi MR, Frati G, Volpe M, Rubattu S, Sciarretta S.Pharmacological restoration of autophagy reduces hypertension-related stroke occurrence. Autophagy. 2020 Aug;16(8):1468-1481. doi:10.1080/15548627.2019.1687215. Epub 2019 Nov 12. PMID: 31679456; PMCID: PMC7469607.
  34. Li B, Shi Y, Liu M, Wu F, Hu X, Yu F, Wang C, Ye L. Attenuates of NAD+ impair BMSC osteogenesis and fracture repair through OXPHOS. Stem Cell Res Ther. 2022 Feb 22;13(1):77. doi: 10.1186/s13287-022-02748-9. PMID: 35193674; PMCID: PMC8864833.
  35. Hu M, Xing L, Zhang L, Liu F, Wang S, Xie Y, Wang J, Jiang H, Guo J, Li X, Wang J, Sui L, Li C, Liu D, Liu Z. NAP1L2 drives mesenchymal stem cell senescence and suppresses osteogenic differentiation. Aging Cell. 2022 Jan 15:e13551. doi: 10.1111/acel.13551. Epub ahead of print. PMID: 35032339.
  36. Song J, Li J, Yang F, et al. Nicotinamide mononucleotide promotes osteogenesis and reduces adipogenesis by regulating mesenchymal stromal cells via the SIRT1 pathway in aged bone marrow. Cell Death Dis. 2019;10(5):336. Published 2019 Apr 18. doi:10.1038/s41419-019-1569-2.
  37. Yoo KH, Tang JJ, Rashid MA, Cho CH, Corujo-Ramirez A, Choi J, Bae MG, Brogren D, Hawse JR, Hou X, Weroha SJ, Oliveros A, Kirkeby LA, Baur JA, Jang MH. Nicotinamide mononucleotide prevents cisplatin-induced cognitive impairments. Cancer Res. 2021 Mar 26:canres.3290.2020. doi: 10.1158/0008-5472.CAN-20-3290.
  38. Zhen Yu, Shuai Tong, Can Zhang et al. Nicotinamide mononucleotide enhances the efficacy and persistence of CD19 CAR-T cells via NAD + –Sirt1 axis, 19 April 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1483519/v1].
  39. Khosroshahi AJ, Mokhtari B, Badalzadeh R. Combination of nicotinamide mononucleotide and troxerutin induces full protection against doxorubicin-induced cardiotoxicity by modulating mitochondrial biogenesis and inflammatory response. Mol Biol Rep. 2022 Jul 17. doi: 10.1007/s11033-022-07390-5. Epub ahead of print. PMID: 35842854.
  40. Gan L, Liu D, Liu J, Chen E, Chen C, Liu L, Hu H, Guan X, Ma W, Zhang Y, He Y, Liu B, Tang S, Jiang W, Xue J, Xin H. CD38 deficiency alleviates Ang II-induced vascular remodeling by inhibiting small extracellular vesicle-mediated vascular smooth muscle cell senescence in mice. Signal Transduct Target Ther. 2021 Jun 11;6(1):223. doi: 10.1038/s41392-021-00625-0. PMID: 34112762.
  41. Sun L, Zhang W. Preconditioning of mesenchymal stem cells with ghrelin exerts superior cardioprotection in aged heart through boosting mitochondrial function and autophagy flux. Eur J Pharmacol. 2021 May 2;903:174142. doi: 10.1016/j.ejphar.2021.174142.
  42. Whitson JA, Bitto A, Zhang H, Sweetwyne MT, Coig R, Bhayana S, Shankland EG, Wang L, Bammler TK, Mills KF, Imai SI, Conley KE, Marcinek DJ, Rabinovitch PS. SS-31 and NMN: Two paths to improve metabolism and function in aged hearts. Aging Cell. 2020 Aug 11:e13213. doi: 10.1111/acel.13213. Epub ahead of print. PMID: 32779818.
  43. Hosseini L, Vafaee MS, Badalzadeh R. Melatonin and Nicotinamide Mononucleotide Attenuate Myocardial Ischemia/Reperfusion Injury via Modulation of Mitochondrial Function and Hemodynamic Parameters in Aged Rats. J Cardiovasc Pharmacol Ther. 2020 May;25(3):240-250. doi: 10.1177/1074248419882002.
  44. Zhang R, Shen Y, Zhou L, et al. Short-term administration of Nicotinamide Mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure. J Mol Cell Cardiol. 2017;112:64-73. doi: 10.1016/j.yjmcc.2017.09.001.
  45. Sasaki, L., Hamada, Y., Yarimizu, D. et al. Intracrine activity involving NAD-dependent circadian steroidogenic activity governs age-associated meibomian gland dysfunction. Nat Aging 2, 105–114 (2022). https://doi.org/10.1038/s43587-021-00167-8.
  46. Guo X, Tan S, Wang T, Sun R, Li S, Tian P, Li M, Wang Y, Zhang Y, Yan Y, Dong Z, Yan L, Yue X, Wu Z, Li C, Yamagata K, Gao L, Ma C, Li T, Liang X. NAD+ salvage governs mitochondrial metabolism, invigorating natural killer cell antitumor immunity. Hepatology. 2022 Jul 11. doi: 10.1002/hep.32658. Epub ahead of print. PMID: 35815363.
  47. Nomiyama T, Setoyama D, Yasukawa T, Kang D. Mitochondria Metabolomics Reveals a Role of β-Nicotinamide Mononucleotide Metabolism in Mitochondrial DNA Replication. J Biochem. 2021 Dec 4:mvab136. doi: 10.1093/jb/mvab136. Epub ahead of print. PMID: 34865026.
  48. Hunt NJ, Lockwood GP, Kang SWS, Westwood LJ, Limantoro C, Chrzanowski W, McCourt PAG, Kuncic Z, Le Couteur DG, Cogger VC. Quantum Dot Nanomedicine Formulations Dramatically Improve Pharmacological Properties and Alter Uptake Pathways of Metformin and Nicotinamide Mononucleotide in Aging Mice. ACS Nano. 2021 Feb 24. doi: 10.1021/acsnano.0c09278. Epub ahead of print. PMID: 33626869.
  49. Uddin GM, Youngson NA, Chowdhury SS, Hagan C, Sinclair DA, Morris MJ. Administration of Nicotinamide Mononucleotide (NMN) Reduces Metabolic Impairment in Male Mouse Offspring from Obese Mothers. Cells. 2020 Mar 25;9(4):791. doi: 10.3390/cells9040791.
  50. Kim HW, Ryoo GH, Jang HY, Rah SY, Lee DH, Kim DK, Bae EJ, Park BH. NAD+-boosting molecules suppress mast cell degranulation and anaphylactic responses in mice. Theranostics. 2022 Apr 11;12(7):3316-3328. doi: 10.7150/thno.69684. PMID: 35547746; PMCID: PMC9065190.
  51. Liu J, Zong Z, Zhang W, Chen Y, Wang X, Shen J, Yang C, Liu X, Deng H. Nicotinamide Mononucleotide Alleviates LPS-Induced Inflammation and Oxidative Stress via Decreasing COX-2 Expression in Macrophages. Front Mol Biosci. 2021 Jul 6;8:702107. doi: 10.3389/fmolb.2021.702107. PMID: 34295923; PMCID: PMC8290259.
  52. Niu KM, Bao T, Gao L, Ru M, Li Y, Jiang L, Ye C, Wang S, Wu X. The Impacts of Short-Term NMN Supplementation on Serum Metabolism, Fecal Microbiota, and Telomere Length in Pre-Aging Phase. Front Nutr. 2021 Nov 29;8:756243. doi: 10.3389/fnut.2021.756243. PMID: 34912838; PMCID: PMC8667784.
  53. Xiaonan Wang, Wuejun Hu, Yang Yang, Toshihiro Takata, Takashi Sakurai. Nicotinamide mononucleotide protects against ß-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res, 2016; DOI: 10.1016/j.brainres.2016.04.060.
  54. Chandrasekaran K, Najimi N, Sagi AR, Yarlagadda S, Salimian M, Arvas MI, Hedayat AF, Kevas Y, Kadakia A, Russell JW. NAD+ Precursors Repair Mitochondrial Function in Diabetes and Prevent Experimental Diabetic Neuropathy. Int J Mol Sci. 2022 Apr 28;23(9):4887. doi: 10.3390/ijms23094887. PMID: 35563288; PMCID: PMC9102948.
  55. Stefano Tarantini, Marta Noa Valcarcel-Ares, Peter Toth, Andriy Yabluchanskiy, Zsuzsanna Tucsek, Tamas Kiss, Peter Hertelendy, Michael Kinter, Praveen Ballabh, Zoltan Sule, Eszter Farkas, Joseph A. Baur, David A. Sinclair, Anna Csistzar, Zoltan Ungvari. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function inn aged mice. Redox Biol, 2019; DOI: 10.1016/j.redox.2019.101192.
  56. Tamas Kiss, Priya Balasubramanian, Marta Noa Valcarcel-Ares, Stefano Tarantini, Andriy Yabluchanskiy, Tamas Csipo, Agnes Lipecz, Dora Reglodi, Xin A. Zhang, Ferenc Bari, Eszter Farkas, Anna Csiszar, Zoltan Ungvari. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment. Geroscience, 2019; DOI: 10.1007/s11357-019-00074-2.
  57. Leila Hosseini, Fatemeh Farokhi-Sisakht, Reza Badalzadeh, Aytak Khabbaz, Javad Mahmoudi, Saeed Sadigh-Eteghad. Nicotinamide mononucleotide and melatonin alleviate aging-induced cognitive impairment via modulation of mitochondrial function and apoptosis in the prefrontal cortex and hippocampus. Neuroscience, 2019; DOI: 10.1016/j.neuroscience.2019.09.037.
  58. Klimova N, Fearnow A, Long A, Kristian T. NAD+ precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms. Exp Neurol. 2020;325:113144. doi:10.1016/j.expneurol.2019.113144.
  59. Kiss T, Nyúl-Tóth Á, Balasubramanian P, et al. Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: transcriptional footprint of SIRT1 activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects. Geroscience. 2020;42(2):527-546. doi:10.1007/s11357-020-00165-5.
  60. Chandrasekaran K, Choi J, Arvas MI, Salimian M, Singh S, Xu S, Gullapalli RP, Kristian T, Russell JW. Nicotinamide Mononucleotide Administration Prevents Experimental Diabetes-Induced Cognitive Impairment and Loss of Hippocampal Neurons. Int J Mol Sci. 2020 May 26;21(11):3756. DOI: 10.3390/ijms21113756. PMID: 32466541; PMCID: PMC7313029.
  61. Deng, X., Liang, X., Yang, H., Huang, Z., Huang, X., Liang, C., Kuang, Y., Qin, Y., Lin, F. and Luo, Z. (2020), Nicotinamide mononucleotide (NMN) protects bEnd.3 cells against H2O2‐induced damage via NAMPT and the NF‐κB p65 signalling pathway. FEBS Open Bio. Accepted Author Manuscript. DOI: 10.1002/2211-5463.13067.
  62. Chandrasekaran K, Najimi N, Sagi AR, Yarlagadda S, Salimian M, Arvas MI, Hedayat AF, Kevas Y, Kadakia A, Russell JW. NAD+ Precursors Repair Mitochondrial Function in Diabetes and Prevent Experimental Diabetic Neuropathy. Int J Mol Sci. 2022 Apr 28;23(9):4887. doi: 10.3390/ijms23094887. PMID: 35563288; PMCID: PMC9102948.
  63. Yu M, Zheng X, Cheng F, Shao B, Zhuge Q, Jin K. Metformin, Rapamycin, or Nicotinamide Mononucleotide Pretreatment Attenuate Cognitive Impairment After Cerebral Hypoperfusion by Inhibiting Microglial Phagocytosis. Front Neurol. 2022 Jun 13;13:903565. doi: 10.3389/fneur.2022.903565. PMID: 35769369; PMCID: PMC9234123.
  64. Hu Y, Huang Y, Xing S, Chen C, Shen D, Chen J. Aβ promotes CD38 expression in senescent microglia in Alzheimer’s disease. Biol Res. 2022 Mar 3;55(1):10. doi: 10.1186/s40659-022-00379-1. PMID: 35241173; PMCID: PMC8892694.
  65. Liu X, Dilxat T, Shi Q, Qiu T, Lin J. The combination of nicotinamide mononucleotide and lycopene prevents cognitive impairment and attenuates oxidative damage in D-galactose induced aging models via Keap1-Nrf2 signaling. Gene. 2022 May 15;822:146348. doi: 10.1016/j.gene.2022.146348. Epub 2022 Feb 17. PMID: 35183682.Mode.
  66. Miao Y, Cui Z, Gao Q, Rui R, Xiong B. Nicotinamide Mononucleotide Supplementation Reverses the Declining Quality of Maternally Aged Oocytes. Cell Rep. 2020 Aug 4;32(5):107987. doi: 10.1016/j.celrep.2020.107987. PMID: 32755581.
  67. Wang L, Chen Y, Wei J, Guo F, Li L, Han Z, Wang Z, Zhu H, Zhang X, Li Z, Dai X. Administration of nicotinamide mononucleotide improves oocyte quality of obese mice. Cell Prolif. 2022 Jul 10:e13303. doi: 10.1111/cpr.13303. Epub ahead of print. PMID: 35811338.
  68. Yoshino M, Yoshino J, Kayser BD, Patti G, Franczyk MP, Mills KF, Sindelar M, Pietka T, Patterson BW, Imai SI, Klein S. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science. 2021 Apr 22:eabe9985. doi: 10.1126/science.abe9985. Epub ahead of print. PMID: 33888596.
  69. Masaki Igarashi, Masaomi Miura, Yoshiko Nakagawa-Nagahama et al. Chronic nicotinamide mononucleotide supplementation elevates blood nicotinamide adenine dinucleotide levels and alters muscle motility in healthy old men, 09 June 2021.DOI: 10.21203/rs.3.rs-455083/v1
  70. Katayoshi T, Nakajo T, Tsuji-Naito K. Restoring NAD+ by NAMPT is essential for the SIRT1/p53-mediated survival of UVA- and UVB-irradiated epidermal keratinocytes. J Photochem Photobiol B. 2021 Jun 12;221:112238. doi: 10.1016/j.jphotobiol.2021.112238. Epub ahead of print. PMID: 34130091.
  71. Liao B, Zhao Y, Wang D, Zhang X, Hao X, Hu M. Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: a randomized, double-blind study. J Int Soc Sports Nutr. 2021 Jul 8;18(1):54. doi: 10.1186/s12970-021-00442-4. PMID: 34238308; PMCID: PMC8265078.
  72. Ito N, Takatsu A, Ito H, Koike Y, Yoshioka K, Kamei Y, Imai SI. Slc12a8 in the lateral hypothalamus maintains energy metabolism and skeletal muscle functions during aging. Cell Rep. 2022 Jul 26;40(4):111131. doi: 10.1016/j.celrep.2022.111131. PMID: 35905718.
  73. Empty
  74. Yasuda I, Hasegawa K, Sakamaki Y, Muraoka H, Kawaguchi T, Kusahana E, Ono T, Kanda T, Tokuyama H, Wakino S, Itoh H. Pre-emptive Short-term Nicotinamide Mononucleotide Treatment in a Mouse Model of Diabetic Nephropathy. J Am Soc Nephrol. 2021 Jun 1;32(6):1355-1370. doi: 10.1681/ASN.2020081188.
  75. Ru M, Wang W, Zhai Z, Wang R, Li Y, Liang J, Kothari D, Niu K, Wu X. Nicotinamide mononucleotide supplementation protects the intestinal function in aging mice and D-galactose induced senescent cells. Food Funct. 2022 Jul 18;13(14):7507-7519. doi: 10.1039/d2fo00525e. PMID: 35678708.
  76. Yi M, Ma Y, Zhu S, Luo C, Chen Y, Wang Q, Deng H. Comparative proteomic analysis identifies biomarkers for renal aging. Aging (Albany NY). 2020 Nov 6;12(21):21890-21903. doi: 10.18632/aging.104007. Epub 2020 Nov 6. PMID: 33159023; PMCID: PMC7695359.
  77. Murata MM, Kong X, Moncada E, Chen Y, Imamura H, Wang P, Berns MW, Yokomori K, Digman MA. NAD+ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol Biol Cell. 2019 Sep 15;30(20):2584-2597. doi: 10.1091/mbc.E18-10-0650. Epub 2019 Aug 7. PMID: 31390283; PMCID: PMC6740200.
  78. Mateuszuk Ł, Campagna R, Kutryb-Zając B, Kuś K, Słominska EM, Smolenski RT, Chlopicki S. Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside. Biochem Pharmacol. 2020 Aug;178:114019. doi: 10.1016/j.bcp.2020.114019.
  79. Gao JF, Tang L, Luo F, Zhang YY, Chen L, Ding H, Meng ZD. Nicotinamide mononucleotide ameliorates DNFB-induced atopic dermatitis-like symptoms in mice by blocking activation of ROS-mediated JAK2/STAT5 signaling pathway. Int Immunopharmacol. 2022 Aug;109:108812. doi: 10.1016/j.intimp.2022.108812. Epub 2022 May 6. PMID: 35533554.
  80. Ren C, Hu C, Wu Y, Li T, Zou A, Yu D, Shen T, Cai W, Yu J. Nicotinamide Mononucleotide Ameliorates Cellular Senescence and Inflammation Caused by Sodium Iodate in RPE. Oxid Med Cell Longev. 2022 Jul 18;2022:5961123. doi: 10.1155/2022/5961123. PMID: 35898618; PMCID: PMC9313989.
  81. Hasegawa K, Sakamaki Y, Tamaki M, Wakino S. Nicotinamide mononucleotide ameliorates adriamycin-induced renal damage by epigenetically suppressing the NMN/NAD consumers mediated by Twist2. Sci Rep. 2022 Aug 12;12(1):13712. doi: 10.1038/s41598-022-18147-2. PMID: 35962139; PMCID: PMC9374671.
  82. Chang TM, Yang TY, Huang HC. Nicotinamide Mononucleotide and Coenzyme Q10 Protects Fibroblast Senescence Induced by Particulate Matter Preconditioned Mast Cells. Int J Mol Sci. 2022 Jul 7;23(14):7539. doi: 10.3390/ijms23147539. PMID: 35886889; PMCID: PMC9319393.
  83. Ma D, Hu L, Wang J, Luo M, Liang A, Lei X, Liao B, Li M, Xie M, Li H, Gong Y, Zi D, Li X, Chen X, Liao X. Nicotinamide mononucleotide improves spermatogenic function in streptozotocin-induced diabetic mice via modulating the glycolysis pathway. Acta Biochim Biophys Sin (Shanghai). 2022 Jul 25. doi: 10.3724/abbs.2022099. Epub ahead of print. PMID: 35929593.
  84. Takeshi Katayoshi, Sachi Uehata, Noe Nakashima et al. Nicotinamide adenine dinucleotide metabolism and arterial stiffness after long-term nicotinamide mononucleotide supplementation: a randomized, double-blind, placebo-controlled trial, 29 July 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1802944/v1].
  85. Kimura S, Ichikawa M, Sugawara S, et al. (September 05, 2022) Nicotinamide Mononucleotide Is Safely Metabolized and Significantly Reduces Blood Triglyceride Levels in Healthy Individuals. Cureus 14(9): e28812. doi:10.7759/cureus.28812.
  86. Pan Huang, Xuxin Wang, Siyu Wang, Zhipeng Wu, Zhengrong Zhou, Genbao Shao, Caifang Ren, Meiqian Kuang, Yan Zhou, Anqi Jiang, Weihong Tang, Jianye Miao, Xin Qian, Aihua Gong, Min Xu. Treatment of inflammatory bowel disease: Potential effect of NMN on intestinal barrier and gut microbiota. Current Research in Food Science, Volume 5, 2022, Pages 1403 1411. ISSN 2665-9271. https://doi.org/10.1016/j.crfs.2022.08.011.
  87. Aflatounian A, Paris VR, Richani D, Edwards MC, Cochran BJ, Ledger WL, Gilchrist RB, Bertoldo MJ, Wu LE, Walters KA. Declining muscle NAD+ in a hyperandrogenism PCOS mouse model: Possible role in metabolic dysregulation. Mol Metab. 2022 Sep 9;65:101583. doi: 10.1016/j.molmet.2022.101583. Epub ahead of print. PMID: 36096453; PMCID: PMC9490589.
  88. Setoyama, Daiki and Nomiyama, Tomoko and Yamamoto, Masamichi and Kang, Dongchon, β-Nicotinamide Mononucleotide Supplementation Increases the Nucleotide Pool Through Multiple Pathways, Improving Mitochondrial DNA Metabolism. Available at SSRN: https://ssrn.com/abstract=4227260 or http://dx.doi.org/10.2139/ssrn.4227260.
  89. Lee D, Tomita Y, Miwa Y, Shinojima A, Ban N, Yamaguchi S, Nishioka K, Negishi K, Yoshino J, Kurihara T. Nicotinamide Mononucleotide Prevents Retinal Dysfunction in a Mouse Model of Retinal Ischemia/Reperfusion Injury. International Journal of Molecular Sciences. 2022; 23(19):11228. https://doi.org/10.3390/ijms231911228.
  90. Luo C, Ding W, Yang C, Zhang W, Liu X, Deng H. Nicotinamide Mononucleotide Administration Restores Redox Homeostasis via the Sirt3-Nrf2 Axis and Protects Aged Mice from Oxidative Stress-Induced Liver Injury. J Proteome Res. 2022 Jul 1;21(7):1759-1770. doi: 10.1021/acs.jproteome.2c00167. Epub 2022 Jun 14. PMID: 35699728.
  91. Jin R, Niu C, Wu F, Zhou S, Han T, Zhang Z, Li E, Zhang X, Xu S, Wang J, Tian S, Chen W, Ye Q, Cao C, Cheng L. DNA damage contributes to age-associated differences in SARS-CoV-2 infection. Aging Cell. 2022 Oct 18:e13729. doi: 10.1111/acel.13729. Epub ahead of print. PMID: 36254583.
  92. Zhao X, Zhang M, Wang J, Ji K, Wang Y, Sun X, Xu C, Wang Q, He N, Song H, Du L, Wang F, Huang H, Liu Y, Liu Q. NMN ameliorated radiation induced damage in NRF2-deficient cell and mice via regulating SIRT6 and SIRT7. Free Radic Biol Med. 2022 Oct 14:S0891-5849(22)00897-8. doi: 10.1016/j.freeradbiomed.2022.10.267. Epub ahead of print. PMID: 36252808.
  93. Shen X, Wu B, Jiang W, Li Y, Zhang Y, Zhao K, Nie N, Gong L, Liu Y, Zou X, Liu J, Jin J, Ouyang H. Scale bar of aging trajectories for screening personal rejuvenation treatments. Comput Struct Biotechnol J. 2022 Oct 21;20:5750-5760. doi: 10.1016/j.csbj.2022.10.021. PMID: 36382193; PMCID: PMC9619353.
  94. Wong W, Crane ED, Zhang H, Li J, Day TA, Green AE, Menzies KJ, Crane JD. Pgc-1α controls epidermal stem cell fate and skin repair by sustaining NAD+ homeostasis during aging. Mol Metab. 2022 Nov;65:101575. doi: 10.1016/j.molmet.2022.101575. Epub 2022 Aug 17. PMID: 35987498; PMCID: PMC9463389.
  95. Yi L, Maier AB, Tao R, Lin Z, Vaidya A, Pendse S, Thasma S, Andhalkar N, Avhad G, Kumbhar V. The efficacy and safety of β-nicotinamide mononucleotide (NMN) supplementation in healthy middle-aged adults: a randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trial. Geroscience. 2022 Dec 8. doi: 10.1007/s11357-022-00705-1. Epub ahead of print. PMID: 36482258.
  96. Lee, D.; Tomita, Y.; Miwa, Y.; Jeong, H.; Shinojima, A.; Ban, N.; Yamaguchi, S.; Nishioka, K.; Negishi, K.; Yoshino, J.; Kurihara, T. Nicotinamide Mononucleotide Protects against Retinal Dysfunction in a Murine Model of Carotid Artery Occlusion. Int. J. Mol. Sci.2022,23, 14711. https://doi.org/10.3390/ijms232314711.
  97. Tian Y, Zhu CL, Li P, Li HR, Liu Q, Deng XM, Wang JF. Nicotinamide Mononucleotide Attenuates LPS-Induced Acute Lung Injury With Anti-Inflammatory, Anti-Oxidative and Anti-Apoptotic Effects. J Surg Res. 2022 Nov 5;283:9-18. doi: 10.1016/j.jss.2022.09.030. Epub ahead of print. PMID: 36347171.
  98. ZHAO, B., Liu, C., Qiang, L., Liu, J., Qiu, Z., Zhang, Z., Zhang, J., Li, Y., & Zhang, M. (2022). Clinical observation of the effect of nicotinamide mononucleotide on the improvement of insomnia in middle-aged and old adults. American Journal of Translational Medicine, 6(4), 167–176.
  99. Wang H, Sun Y, Pi C, Yu X, Gao X, Zhang C, Sun H, Zhang H, Shi Y, He X. Nicotinamide Mononucleotide Supplementation Improves Mitochondrial Dysfunction and Rescues Cellular Senescence by NAD+/Sirt3 Pathway in Mesenchymal Stem Cells. International Journal of Molecular Sciences. 2022; 23(23):14739. https://doi.org/10.3390/ijms232314739.
  100. Margier M, Kuehnemann C, Hulo N, Morales J, Ashok Kumaar PV, Cros C, Cannelle H, Charmetant J, Verdin E, Canault M, Grozio A. Nicotinamide Mononucleotide Administration Prevents Doxorubicin-Induced Cardiotoxicity and Loss in Physical Activity in Mice. Cells. 2022 Dec 27;12(1):108. doi: 10.3390/cells12010108. PMID: 36611902; PMCID: PMC9818647.
  101. Wang L, Zhao M, Qian R, Wang M, Bao Q, Chen X, Du W, Zhang L, Ye T, Xie Y, Zhang B, Peng L, Yao Y. Nicotinamide Mononucleotide Ameliorates Silica-Induced Lung Injury through the Nrf2-Regulated Glutathione Metabolism Pathway in Mice. Nutrients. 2023; 15(1):143. https://doi.org/10.3390/nu15010143.
  102. Jiang Y, Luo Z, Gong Y, Fu Y, Luo Y. NAD+ supplementation limits triple-negative breast cancer metastasis via SIRT1-P66Shc signaling. Oncogene. 2023 Jan 23. doi: 10.1038/s41388-023-02592-y. Epub ahead of print. PMID: 36690678.
  103. Fang D, Xu T, Sun J, Shi J, Li F, Yin Y, Wang Z, Liu Y. Nicotinamide Mononucleotide Ameliorates Sleep Deprivation-Induced Gut Microbiota Dysbiosis and Restores Colonization Resistance against Intestinal Infections. Adv Sci (Weinh). 2023 Jan 25:e2207170. doi: 10.1002/advs.202207170. Epub ahead of print. PMID: 36698264.
  104. Zhu X, Cheng J, Yu J, Liu R, Ma H, Zhao Y. Nicotinamide mononucleotides alleviated neurological impairment via anti-neuroinflammation in traumatic brain injury. Int J Med Sci 2023; 20(3):307-317. doi:10.7150/ijms.80942.
  105. Rashid MA, Oliveros A, Kim YS, Jang MH. Nicotinamide Mononucleotide Prevents Cisplatin-Induced Mitochondrial Defects in Cortical Neurons Derived from Human Induced Pluripotent Stem Cells. Brain Plast. 2022 Dec 20;8(2):143-152. doi: 10.3233/BPL-220143. PMID: 36721392; PMCID: PMC9837732.
  106. Wu K, Li B, Ma Y, Tu T, Lin Q, Zhu J, Zhou Y, Liu N, Liu Q. Nicotinamide mononucleotide attenuates HIF-1α activation and fibrosis in hypoxic adipose tissue via NAD+/SIRT1 axis. Front Endocrinol (Lausanne). 2023 Jan 26;14:1099134. doi: 10.3389/fendo.2023.1099134. PMID: 36777361; PMCID: PMC9909340.
  107. Jiang Y, Wang D, Zhang C, Jiao Y, Pu Y, Cheng R, Li C, Chen Y. Nicotinamide mononucleotide restores oxidative stress-related apoptosis of oocyte exposed to benzyl butyl phthalate in mice. Cell Prolif. 2023 Feb 9:e13419. doi: 10.1111/cpr.13419. Epub ahead of print. PMID: 36756972.
  108. Montali I, Berti CC, Morselli M, Acerbi G, Barili V, Pedrazzi G, Montanini B, Boni C, Alfieri A, Pesci M, Loglio A, Degasperi E, Borghi M, Perbellini R, Penna A, Laccabue D, Rossi M, Vecchi A, Tiezzi C, Reverberi V, Boarini C, Abbati G, Massari M, Lampertico P, Missale G, Ferrari C, Fisicaro P. Deregulated intracellular pathways define novel molecular targets for HBV-specific CD8 T cell reconstitution in chronic hepatitis B. J Hepatol. 2023 Mar 7:S0168-8278(23)00167-8. doi: 10.1016/j.jhep.2023.02.035. Epub ahead of print. PMID: 36893853.