Celkové přínosy NMN (nikotinamidového mononukleotidu) pro zdraví

NMN je molekula, která si získává pozornost vědecké komunity pro své potenciální zdravotní přínosy. Mezi ně patří:

Obnova kostí

Nikotinamidmononukleotid (NMN) hraje významnou roli při obnově kostí. Pomáhá při tvorbě kolagenu, bílkoviny, která zajišťuje strukturu a pevnost našich kostí. Zvýšením produkce kolagenu může NMN pomoci opravit poškozené kosti a předcházet nemocem souvisejícím s kostmi. Díky tomu je NMN potenciálním spojencem při udržování zdraví kostí a v boji proti onemocněním, jako je osteoporóza. Kromě toho role NMN v energetickém metabolismu může podporovat energeticky náročný proces obnovy a remodelace kostí. To je důležité zejména s přibývajícím věkem, kdy se hustota kostí přirozeně snižuje. Úloha NMN při obnově kostí je proto klíčová nejen pro zotavení po zranění, ale také pro udržení celkového zdraví kostry.

Bojuje proti rakovině

Nové výzkumy naznačují, že NMN může pomáhat v boji proti rakovině. Činí tak tím, že posiluje imunitní reakci organismu a brzdí růst rakovinných buněk. Jedná se o slibnou oblast studia, která by mohla vést k novým způsobům léčby rakoviny. Potenciální role NMN v prevenci a léčbě rakoviny je vzrušující hranicí onkologického výzkumu, která nabízí naději na účinnější strategie v boji proti této nemoci. Úloha NMN při opravách DNA navíc může pomoci předcházet genetickým mutacím, které často vedou ke vzniku rakoviny, což přidává další vrstvu jeho potenciálu jako prostředku v boji proti rakovině.

Kardiovaskulární zdraví

NMN může prospívat zdraví kardiovaskulárního systému několika způsoby. Může zlepšovat průtok krve, snižovat zánět a chránit před srdečními chorobami. Podporou zdraví kardiovaskulárního systému může NMN pomoci chránit před srdečními chorobami a zlepšit celkovou funkci srdce. To z něj činí mocného spojence pro zdravé srdce a silný oběhový systém. Úloha NMN v energetickém metabolismu může navíc podpořit vysoké energetické nároky srdce, což dále přispívá ke zdraví kardiovaskulárního systému.

Oprava DNA

NMN pomáhá při opravě DNA, což je životně důležitý proces, který napravuje poškození molekuly DNA. Posílením tohoto procesu může NMN pomáhat udržovat genetickou stabilitu a předcházet nemocem. To má zásadní význam pro prevenci mutací, které mohou vést k nemocem, jako je rakovina. NMN svou úlohou při opravách DNA podporuje integritu našeho genetického materiálu a přispívá tak k celkovému zdraví buněk. Kromě toho může NMN podporou oprav DNA pomáhat v boji proti účinkům stárnutí a poškození DNA vlivem životního prostředí, čímž může zpomalit proces stárnutí a snížit riziko onemocnění souvisejících s věkem.

Ochrana očí

Bylo zjištěno, že NMN má významný přínos pro zdraví očí. Může chránit oči tím, že snižuje oxidační stres, který je hlavní příčinou očních onemocnění souvisejících s věkem. Oxidační stres může poškodit sítnici a vést k onemocněním, jako je makulární degenerace a šedý zákal. Snížením oxidačního stresu může NMN pomoci chránit před těmito stavy. Kromě toho může NMN díky své roli v energetickém metabolismu podporovat vysoké energetické nároky očí a přispívat tak k celkovému zdraví očí. Úloha NMN v ochraně očí je proto klíčová nejen pro udržení zraku, ale také pro prevenci vzniku očních onemocnění souvisejících s věkem.

Posiluje imunitní funkce

NMN může posílit funkci imunitního systému tím, že zvyšuje aktivitu imunitních buněk. To může pomoci chránit před infekcemi a nemocemi. Silný imunitní systém je nezbytný pro odvrácení nemocí a udržení zdraví. Úloha NMN v energetickém metabolismu může navíc podpořit energeticky náročné procesy imunitního systému, což dále posiluje imunitní funkci. Podporou imunitní funkce může NMN přispět k udržení celkového zdraví a pohody, což z něj činí cenný doplněk stravy pro ty, kteří chtějí posílit svou imunitu.

Dlouhověkost

NMN je spojován s dlouhověkostí díky své roli v energetickém metabolismu a opravách DNA. Tím, že zvyšuje hladinu NAD+, může přispět ke zpomalení procesu stárnutí. To by mohlo potenciálně prodloužit délku života a zlepšit kvalitu života ve vyšším věku. Kromě toho může NMN podporou oprav DNA a snižováním oxidačního stresu bojovat proti poškození buněk, které přispívá ke stárnutí, a tím dále podporovat dlouhověkost. Potenciální úloha NMN při podpoře dlouhověkosti tedy přesahuje pouhé prodloužení délky života - mohl by také zlepšit kvalitu těchto let navíc.

Metabolismus

NMN hraje klíčovou roli v energetickém metabolismu. Pomáhá přeměňovat potravu na energii, čímž podporuje celkové zdraví metabolismu. To má zásadní význam pro udržení hladiny energie, podporu fyzické aktivity a zdravou regulaci hmotnosti. Úloha NMN při zvyšování hladiny NAD+ může navíc posílit buněčný metabolismus, což dále podporuje tvorbu energie. Úloha NMN v metabolismu je tedy klíčová nejen pro zajištění energie, kterou potřebujeme k fungování, ale také pro podporu celkového zdraví a pohody.

Zlepšuje kognitivní funkce

NMN může zlepšovat kognitivní funkce tím, že zlepšuje energetický metabolismus mozku a chrání před neurodegenerativními onemocněními. Mozek je energeticky náročný orgán a role NMN v energetickém metabolismu může podpořit vysoké energetické nároky mozku, což přispívá ke kognitivním funkcím. Úloha NMN při opravách DNA a snižování oxidačního stresu může navíc chránit před poškozením neuronů, které může vést k poklesu kognitivních funkcí. Úloha NMN při zlepšování kognitivních funkcí je proto klíčová nejen pro udržení bystrosti mysli, ale také pro prevenci vzniku neurodegenerativních onemocnění.

Zlepšuje plodnost

Výzkum naznačuje, že NMN může zlepšovat plodnost tím, že chrání kvalitu vajíček a zlepšuje reprodukční zdraví. Úloha NMN při opravách DNA může pomoci zachovat genetickou integritu vajíček, která je pro plodnost zásadní. Kromě toho může NMN svou úlohou v energetickém metabolismu podporovat energeticky náročné reprodukční procesy, což dále zvyšuje plodnost. Potenciální úloha NMN při zlepšování plodnosti tedy přesahuje pouhé zvyšování šancí na početí - mohl by také přispívat ke zdraví budoucích generací.

Kůže a svaly

NMN může prospívat zdraví kůže a svalů tím, že zvyšuje tvorbu kolagenu a zlepšuje energetický metabolismus. Kolagen je bílkovina, která zajišťuje strukturu a pevnost kůže a svalů, a role NMN v produkci kolagenu může podpořit zdraví kůže a svalů. Úloha NMN v energetickém metabolismu navíc může podpořit energeticky náročné procesy údržby a obnovy kůže a svalů. Úloha NMN ve zdraví kůže a svalů je proto klíčová nejen pro udržení fyzické síly a vzhledu, ale také pro podporu celkového zdraví a pohody.

Zdraví orgánů

NMN může podporovat zdraví orgánů tím, že zlepšuje energetický metabolismus a snižuje oxidační stres. Orgány jsou energeticky náročné tkáně a role NMN v energetickém metabolismu může podpořit vysoké energetické nároky orgánů, což přispívá k jejich zdraví. Kromě toho může NMN svou úlohou při snižování oxidačního stresu chránit orgány před poškozením, čímž dále podporuje zdraví orgánů. Úloha NMN ve zdraví orgánů je tedy klíčová nejen pro zachování funkce jednotlivých orgánů, ale také pro podporu celkového zdraví a pohody.

Mechanismus

NMN působí tak, že zvyšuje hladinu NAD+ v těle. NAD+ je důležitý koenzym, který podporuje metabolické procesy a ovlivňuje celou řadu systémů, včetně energetického metabolismu, oprav DNA a přežití buněk. Hladina NAD+ však s věkem přirozeně klesá, což vede k metabolickým poruchám a zvýšenému riziku onemocnění. Doplněním NMN můžeme zvýšit hladinu NAD+ a potenciálně tak zlepšit zdraví a prodloužit délku života.

Tyto přínosy jsou podloženy více než 100 vědeckými studiemi, kterým se budeme věnovat dále v tomto článku.

Chemická struktura NMN

Nikotinamidmononukleotid (NMN) je nukleotid odvozený od ribózy a nikotinamidu. Stejně jako nikotinamid ribosid je NMN derivátem niacinu a lidé mají enzymy, které mohou NMN využívat k tvorbě nikotinamid adenindinukleotidu (NADH).

NMN se skládá z molekuly nikotinamidu, ribózy a fosfátové skupiny. Riboza je jednoduchý cukr, který je nezbytný pro tvorbu ATP, primárního nosiče energie v buňkách, zatímco fosfátová skupina zvyšuje stabilitu molekuly a podporuje její úlohu při biosyntéze NAD+.


«NMN se skládá z molekuly nikotinamidu, ribózy a fosfátové skupiny.»

Tato jedinečná struktura umožňuje NMN hrát klíčovou roli při výrobě energie v těle. Je klíčovým hráčem při tvorbě NAD+, koenzymu, který hraje zásadní roli při přenosu energie v buňkách a podporuje buněčný metabolismus.


«NMN je klíčovým hráčem při tvorbě NAD+, koenzymu, který hraje zásadní roli při přenosu energie v buňkách a podporuje buněčný metabolismus.»

Které potraviny obsahují NMN ?

NMN neboli nikotinamid mononukleotid je účinná sloučenina, která se přirozeně vyskytuje v různých zdrojích potravin. Patří mezi ně edamame, brokolice, zelí, okurky, avokádo, rajčata a syrové hovězí maso. Například edamame, což je přípravek z nezralých sójových bobů v lusku, je známý vysokou koncentrací NMN. Podobně je na tuto sloučeninu bohatá zelenina, jako je brokolice a zelí. Ovoce, jako je avokádo a rajčata, NMN také obsahuje, takže je skvělým doplňkem vašeho jídelníčku, pokud chcete zvýšit příjem NMN. Bylo zjištěno, že NMN obsahují dokonce i některé druhy masa, například syrové hovězí. Je však důležité si uvědomit, že ačkoli tyto potraviny NMN obsahují, jejich koncentrace jsou relativně nízké a museli byste je konzumovat ve velkém množství, abyste zaznamenali významné zvýšení hladiny NMN v těle. Proto se mnoho lidí rozhoduje pro doplňky stravy s NMN, které nabízí například společnost C60 France, aby si zajistili účinnou dávku.

V další části tohoto článku se budeme hlouběji zabývat konkrétními zdravotními přínosy NMN, které jsou podloženy vědeckými studiemi.

Seznam výzkumů NMN

Tato tabulka uvádí seznam hlavních vědeckých studií o zdravotních přínosech nikotinamidmononukleotidu (NMN).

Kategorie výzkumu Shrnutí / závěr Zvířata Člověk
Oprava kostí
  • Oživuje kmenové buňky kostní dřeně a podporuje tvorbu kostí. 2, 34, 35, 36
Bojuje proti rakovině
  • Zvyšuje účinek imunoterapie na potlačení nádorů. 3, 3846
  • Snižuje toxické vedlejší účinky chemoterapie. 37, 39, 92, 100105
  • Inhibuje růst rakoviny. 102
Kardiovaskulární
  • Obnovuje funkci srdce a cév. 4, 23, 25, 40, 42, 7884
  • Chrání srdce před poškozením po srdečním infarktu. 4143
  • Předchází srdečnímu selhání podporou zdraví mitochondrií. 44
Oprava DNA
  • Zlepšuje mechanismy opravy DNA. 18
Ochrana očí
  • Podporuje zotavení očí po úrazu. 6, 31, 80, 89, 96
  • Zlepšuje stav suchého oka tím, že snižuje zánět a zvyšuje sekreci oleje. 17, 45
Zvyšuje obranyschopnost
  • Podporuje zotavení z COVID-19. 7
  • Inhibuje infekci COVID-19. 91
  • Snižuje výskyt závažných alergických reakcí. 50
  • Snižuje zánět potlačením aktivace imunitních buněk. 51
  • Snižuje zánět tukové tkáně. 106
  • Zachraňuje funkci imunitních buněk proti hepatitidě B. 108
Životnost
  • Dvojnásobná životnost. 8
  • Restauruje kardiovaskulární, kognitivní a metabolický pokles. 20
  • Zdvojnásobuje délku telomer. 5, 52
  • Snižuje biologický věk. 93
  • Zlepšuje kvalitu spánku. 98
  • Omlazuje kmenové buňky. 99
Metabolismus
  • Zlepšuje citlivost na inzulín a metabolismus glukózy. 9, 27, 48, 49, 87
  • Zvyšuje produkci energie omlazováním mitochondrií. 21, 29, 47
  • Snižuje množství tuku cirkulujícího v krvi. 85
Kognitivní funkce
  • Zlepšuje kognitivní deficity a defekty mozku u Alzheimerovy choroby. 10, 53, 64
  • Zlepšuje kognitivní poruchy související s věkem a chrání před poškozením cév a mozku. 55, 56, 57, 59, 61, 62, 63, 65, 104
  • Podporuje obnovu mozkových funkcí po krvácení a mrtvici. 12, 58
  • Chrání před neurodegenerací a kognitivními poruchami spojenými s diabetem. 60
  • Snižuje výskyt cévní mozkové příhody způsobené vysokou spotřebou soli. 33
  • Snižuje depresivní chování. 11
Zlepšuje plodnost
  • Zlepšuje plodnost a s věkem související pokles kvality oocytů (vajíček). 13, 66, 83
  • Chrání oocyty před toxiny z prostředí. 19, 107
Kůže a svaly
  • Zvyšuje svalovou sílu a zlepšuje vytrvalost při cvičení. 69, 71, 72, 95
  • Chrání před stárnutím pokožky. 70, 79, 82
  • Podporuje hojení ran. 94
Zdraví organismu
  • Snižuje poškození jater způsobené alkoholem. 14
  • Snižuje jizvení jater. 16
  • Chrání před poškozením ledvin. 15, 74, 81, 90
  • Omlazuje úbytek střev související s věkem. 75, 76, 86
  • Chrání před poškozením plic. 97, 101
  • Chrání před infekcí orgánů. 103
Mechanismus
  • Byl identifikován protein, který transportuje NMN do buněk. 1
  • Indukuje metabolický posun v poškozených buňkách na podporu přežití. 77
  • Zvyšuje produkci nukleotidů (stavebních kamenů DNA) v mitochondriích. 88

Odkaz na vědecké studie NMN

  1. Alessia Grozio, Kathryn F. Mills, Jun Yoshino, Santina Bruzzone, Giovanna Sociali, Kyohei Tokizane, Hanyue Cecilia Lei, Richard Cunningham, Yo Sasaki, Marie E. Migaud, Shin-ichiro Imai.Slc12a8 is a nicotinamide mononucleotide transporter.Nat Metab, 2019; DOI:10.1038/s42255-018-0009-4.
  2. Huang RX, Tao J. Nicotinamide mononucleotide attenuates glucocorticoid-induced osteogenic inhibition by regulating the SIRT1/PGC-1α signaling pathway.Mol Med Rep. 2020;22(1):145-154. doi:10.3892/mmr.2020.11116
  3. Lv H, Lv G, Chen C, Zong Q, Jiang G, Ye D, Cui X, He Y, Xiang W, Han Q, Tang L, Yang W, Wang H.NAD+Metabolism Maintains Inducible PD-L1 Expression to Drive Tumor Immune Evasion.Cell Metab. 2020 Nov 9.DOI:10.1016/j.cmet.2020.10.021
  4. Martin AS, Abraham DM, Hershberger KA, et al. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich’s ataxia cardiomyopathy model.JCI Insight. 2017;2(14):e93885. Published 2017 Jul 20. doi:10.1172/jci.insight.93885
  5. Hisayuki Amano, Arindam Chaudhury, Cristian Rodriguez-Aguayo, Lan Lu, Viktor Akhanov, Andre Catic, Yury V. Popov, Eric Verdin, Hannah Johnson, Fabio Stossi, David A. Sinclair, Eiko Nakamaru-Ogiso, Gabriel Lopez-Berestein, Jeffrey T. Chang, Joel R. Neilson, Alan Meeker, Milton Finegold, Joseph A. Baur, Ergun Sahin.Telomere dysfunction induces sirtuin repression that drives telomere-dependent disease.Cell Metab, 2019; DOI:10.1016/j.cmet.2019.03.001.
  6. Chen X, Amorim JA, Moustafa GA, Lee JJ, Yu Z, Ishihara K, Iesato Y, Barbisan P, Ueta T, Togka KA, Lu L, Sinclair DA, Vavvas DG. Neuroprotective effects and mechanisms of action of nicotinamide mononucleotide (NMN) in a photoreceptor degenerative model of retinal detachment. Aging (Albany NY). 2020 Dec 29;12.doi: 10.18632/aging.202453. Epub ahead of print. PMID: 33373320.
  7. Omran HM, Almaliki MS.Influence of NAD+ as an ageing-related immunomodulator on COVID 19 infection: A hypothesis. J Infect Public Health. 2020 Sep;13(9):1196-1201. doi:10.1016/j.jiph.2020.06.004. Epub 2020 Jun 7. PMID: 32534944; PMCID: PMC7275989.
  8. Yoshida M, Satoh A, Lin JB, et al. Extracellular Vesicle-Contained eNAMPT Delays Aging and Extends Lifespan in Mice. Cell Metab. 2019;30(2):329-342.e5. doi:10.1016/j.cmet.2019.05.015
  9. Yoshino M, Yoshino J, Kayser BD, Patti G, Franczyk MP, Mills KF, Sindelar M, Pietka T, Patterson BW, Imai SI, Klein S. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science. 2021 Apr 22:eabe9985. doi: 10.1126/science.abe9985. Epub ahead of print. PMID: 33888596.
  10. Sanli Xing, Yiran Hu, Xujiao Huang, Dingzhu Shen, Chuan Chen.Nicotinamide phosphoribosyl transferase related signalling pathway in early Alzheimer’s disease mouse models.Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China (2019)doi:10.3892/mmr.2019.10782
  11. Xie X, Yu C, Zhou J, et al. Nicotinamide mononucleotide ameliorates the depression-like behaviors and is associated with attenuating the disruption of mitochondrial bioenergetics in depressed mice.J Affect Disord. 2020;263:166-174. doi:10.1016/j.jad.2019.11.147
  12. Liang Shu, Xiaolei Shen, Yaxue Zhao, Xinwei He, Jiawen Yin, Jingjing Su, Qiang Li, Jianren Liu.Mechanisms of transformation of nicotinamide mononucleotides to cerebral infarction hemorrhage based on MCAO model.Saudi J Biol Sci, 2020; DOI:10.1016/j.sjbs.2019.12.023.
  13. Yang L, Lin X, Tang H, Fan Y, Zeng S, Jia L, Li Y, Shi Y, He S, Wang H, Hu Z, Gong X, Liang X, Yang Y, Liu X. Mitochondrial DNA mutation exacerbates female reproductive aging via impairment of the NADH/NAD+ redox.Aging Cell. 2020 Sep;19(9):e13206. doi: 10.1111/acel.13206.
  14. Assiri MA, Ali HR, Marentette JO, Yun Y, Liu J, Hirschey MD, Saba LM, Harris PS, and Fritz KS.Investigating RNA expression profiles altered by nicotinamide mononucleotide therapy in a chronic model of alcoholic liver disease.Hum Genomics, 2019; DOI:10.1186/s40246-019-0251-1.
  15. Jia Y, Kang X, Tan L, Ren Y, Qu L, Tang J, Liu G, Wang S, Xiong Z and Yang L (2021)Nicotinamide Mononucleotide Attenuates Renal Interstitial Fibrosis After AKI by Suppressing Tubular DNA Damage and Senescence.Front. Physiol.12:649547. doi:10.3389/fphys.2021.649547
  16. Zong Z, Liu J, Wang N, Yang C, Wang Q, Zhang W, Chen Y, Liu X, Deng H.Nicotinamide mononucleotide inhibits hepatic stellate cell activation to prevent liver fibrosis via promoting PGE2degradation. Free Radic Biol Med. 2020 Nov 19:S0891-5849(20)31626-9. doi:10.1016/j.freeradbiomed.2020.11.014. Epub ahead of print. PMID: 33220424.
  17. Meng YF, Pu Q, Dai SY, Ma Q, Li X, Zhu W.Nicotinamide Mononucleotide Alleviates Hyperosmolarity-Induced IL-17a Secretion and Macrophage Activation in Corneal Epithelial Cells/Macrophage Co-Culture System. J Inflamm Res. 2021 Feb 22;14:479-493. doi:10.2147/JIR.S292764. PMID: 33658825; PMCID: PMC7917392.
  18. Li J, Bonkowski MS, Moniot S, et al. A conserved NAD+ binding pocket that regulates protein-protein interactions during aging. Science. 2017;355(6331):1312-1317. doi:10.1126/science.aad8242
  19. Miao Y, Li X, Shi X, Gao Q, Chen J, Wang R, Fan Y, Xiong B.Nicotinamide Mononucleotide Restores the Meiotic Competency of Porcine Oocytes Exposed to Ethylene Glycol Butyl Ether.Front Cell Dev Biol. 2021 Feb 2;9:628580. doi:10.3389/fcell.2021.628580.
  20. Mills et al., 2016, Cell Metabolism 24, 795–806, December 13, 2016 ª 2016 Elsevier Inc. DOI: doi.org/10.1016/j.cmet.2016.09.013.
  21. Gomes AP, Price NL, Ling AJ, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155(7):1624-1638. doi:10.1016/j.cell.2013.11.037.
  22. Empty
  23. Yamamoto T, Byun J, Zhai P, Ikeda Y, Oka S, et al. (2014) Nicotinamide Mononucleotide, an Intermediate of NAD+ Synthesis, Protects the Heart from Ischemia and Reperfusion. PLoS ONE 9(6): e98972. doi:10.1371/journal.pone.0098972.
  24. Empty
  25. de Picciotto NE, Gano LB, Johnson LC, et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell. 2016;15(3):522-530. doi:10.1111/acel.12461.
  26. Empty
  27. Keisuke Okabe, Keisuke Yaku, Kazuyuki Tobe, Takashi Nakagawa.Implications of altered NAD metabolism in metabolic disorders.J Biomed Sci, 2019; DOI: 10.1186/s12929-019-0527-8.
  28. Empty
  29. Uddin GM, Youngson NA, Sinclair DA, Morris MJ. Head to Head Comparison of Short-Term Treatment with the NAD(+) Precursor Nicotinamide Mononucleotide (NMN) and 6 Weeks of Exercise in Obese Female Mice. Front Pharmacol. 2016;7:258. Published 2016 Aug 19. doi:10.3389/fphar.2016.00258.
  30. Uchida R, Saito Y, Nogami K, et al.Epigenetic silencing ofLgr5induces senescence of intestinal epithelial organoids during the process of aging [published correction appears in NPJ Aging Mech Dis. 2019 Mar 7;5:5].NPJ Aging Mech Dis. 2018;5:1. Published 2018 Dec 1. doi:10.1038/s41514-018-0031-5
  31. Li Y, Ma X, Li J, et al. Corneal denervation causes epithelial apoptosis through inhibiting NAD. biosynthesis. Invest Ophthalmol Vis Sci. 2019;60:3538–3546.
  32. Yoo KH, Tang JJ, Rashid MA, Cho CH, Corujo-Ramirez A, Choi J, Bae MG, Brogren D, Hawse JR, Hou X, Weroha SJ, Oliveros A, Kirkeby LA, Baur JA, Jang MH. Nicotinamide mononucleotide prevents cisplatin-induced cognitive impairments. Cancer Res. 2021 Mar 26:canres.3290.2020. doi: 10.1158/0008-5472.CAN-20-3290.
  33. Forte M, Bianchi F, Cotugno M, Marchitti S, De Falco E, Raffa S, Stanzione R, Di Nonno F, Chimenti I, Palmerio S, Pagano F, Petrozza V, Micaloni A, Madonna M, Relucenti M, Torrisi MR, Frati G, Volpe M, Rubattu S, Sciarretta S.Pharmacological restoration of autophagy reduces hypertension-related stroke occurrence. Autophagy. 2020 Aug;16(8):1468-1481. doi:10.1080/15548627.2019.1687215. Epub 2019 Nov 12. PMID: 31679456; PMCID: PMC7469607.
  34. Li B, Shi Y, Liu M, Wu F, Hu X, Yu F, Wang C, Ye L. Attenuates of NAD+ impair BMSC osteogenesis and fracture repair through OXPHOS. Stem Cell Res Ther. 2022 Feb 22;13(1):77. doi: 10.1186/s13287-022-02748-9. PMID: 35193674; PMCID: PMC8864833.
  35. Hu M, Xing L, Zhang L, Liu F, Wang S, Xie Y, Wang J, Jiang H, Guo J, Li X, Wang J, Sui L, Li C, Liu D, Liu Z. NAP1L2 drives mesenchymal stem cell senescence and suppresses osteogenic differentiation. Aging Cell. 2022 Jan 15:e13551. doi: 10.1111/acel.13551. Epub ahead of print. PMID: 35032339.
  36. Song J, Li J, Yang F, et al. Nicotinamide mononucleotide promotes osteogenesis and reduces adipogenesis by regulating mesenchymal stromal cells via the SIRT1 pathway in aged bone marrow. Cell Death Dis. 2019;10(5):336. Published 2019 Apr 18. doi:10.1038/s41419-019-1569-2.
  37. Yoo KH, Tang JJ, Rashid MA, Cho CH, Corujo-Ramirez A, Choi J, Bae MG, Brogren D, Hawse JR, Hou X, Weroha SJ, Oliveros A, Kirkeby LA, Baur JA, Jang MH. Nicotinamide mononucleotide prevents cisplatin-induced cognitive impairments. Cancer Res. 2021 Mar 26:canres.3290.2020. doi: 10.1158/0008-5472.CAN-20-3290.
  38. Zhen Yu, Shuai Tong, Can Zhang et al. Nicotinamide mononucleotide enhances the efficacy and persistence of CD19 CAR-T cells via NAD + –Sirt1 axis, 19 April 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1483519/v1].
  39. Khosroshahi AJ, Mokhtari B, Badalzadeh R. Combination of nicotinamide mononucleotide and troxerutin induces full protection against doxorubicin-induced cardiotoxicity by modulating mitochondrial biogenesis and inflammatory response. Mol Biol Rep. 2022 Jul 17. doi: 10.1007/s11033-022-07390-5. Epub ahead of print. PMID: 35842854.
  40. Gan L, Liu D, Liu J, Chen E, Chen C, Liu L, Hu H, Guan X, Ma W, Zhang Y, He Y, Liu B, Tang S, Jiang W, Xue J, Xin H. CD38 deficiency alleviates Ang II-induced vascular remodeling by inhibiting small extracellular vesicle-mediated vascular smooth muscle cell senescence in mice. Signal Transduct Target Ther. 2021 Jun 11;6(1):223. doi: 10.1038/s41392-021-00625-0. PMID: 34112762.
  41. Sun L, Zhang W. Preconditioning of mesenchymal stem cells with ghrelin exerts superior cardioprotection in aged heart through boosting mitochondrial function and autophagy flux. Eur J Pharmacol. 2021 May 2;903:174142. doi: 10.1016/j.ejphar.2021.174142.
  42. Whitson JA, Bitto A, Zhang H, Sweetwyne MT, Coig R, Bhayana S, Shankland EG, Wang L, Bammler TK, Mills KF, Imai SI, Conley KE, Marcinek DJ, Rabinovitch PS. SS-31 and NMN: Two paths to improve metabolism and function in aged hearts. Aging Cell. 2020 Aug 11:e13213. doi: 10.1111/acel.13213. Epub ahead of print. PMID: 32779818.
  43. Hosseini L, Vafaee MS, Badalzadeh R. Melatonin and Nicotinamide Mononucleotide Attenuate Myocardial Ischemia/Reperfusion Injury via Modulation of Mitochondrial Function and Hemodynamic Parameters in Aged Rats. J Cardiovasc Pharmacol Ther. 2020 May;25(3):240-250. doi: 10.1177/1074248419882002.
  44. Zhang R, Shen Y, Zhou L, et al. Short-term administration of Nicotinamide Mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure. J Mol Cell Cardiol. 2017;112:64-73. doi: 10.1016/j.yjmcc.2017.09.001.
  45. Sasaki, L., Hamada, Y., Yarimizu, D. et al. Intracrine activity involving NAD-dependent circadian steroidogenic activity governs age-associated meibomian gland dysfunction. Nat Aging 2, 105–114 (2022). https://doi.org/10.1038/s43587-021-00167-8.
  46. Guo X, Tan S, Wang T, Sun R, Li S, Tian P, Li M, Wang Y, Zhang Y, Yan Y, Dong Z, Yan L, Yue X, Wu Z, Li C, Yamagata K, Gao L, Ma C, Li T, Liang X. NAD+ salvage governs mitochondrial metabolism, invigorating natural killer cell antitumor immunity. Hepatology. 2022 Jul 11. doi: 10.1002/hep.32658. Epub ahead of print. PMID: 35815363.
  47. Nomiyama T, Setoyama D, Yasukawa T, Kang D. Mitochondria Metabolomics Reveals a Role of β-Nicotinamide Mononucleotide Metabolism in Mitochondrial DNA Replication. J Biochem. 2021 Dec 4:mvab136. doi: 10.1093/jb/mvab136. Epub ahead of print. PMID: 34865026.
  48. Hunt NJ, Lockwood GP, Kang SWS, Westwood LJ, Limantoro C, Chrzanowski W, McCourt PAG, Kuncic Z, Le Couteur DG, Cogger VC. Quantum Dot Nanomedicine Formulations Dramatically Improve Pharmacological Properties and Alter Uptake Pathways of Metformin and Nicotinamide Mononucleotide in Aging Mice. ACS Nano. 2021 Feb 24. doi: 10.1021/acsnano.0c09278. Epub ahead of print. PMID: 33626869.
  49. Uddin GM, Youngson NA, Chowdhury SS, Hagan C, Sinclair DA, Morris MJ. Administration of Nicotinamide Mononucleotide (NMN) Reduces Metabolic Impairment in Male Mouse Offspring from Obese Mothers. Cells. 2020 Mar 25;9(4):791. doi: 10.3390/cells9040791.
  50. Kim HW, Ryoo GH, Jang HY, Rah SY, Lee DH, Kim DK, Bae EJ, Park BH. NAD+-boosting molecules suppress mast cell degranulation and anaphylactic responses in mice. Theranostics. 2022 Apr 11;12(7):3316-3328. doi: 10.7150/thno.69684. PMID: 35547746; PMCID: PMC9065190.
  51. Liu J, Zong Z, Zhang W, Chen Y, Wang X, Shen J, Yang C, Liu X, Deng H. Nicotinamide Mononucleotide Alleviates LPS-Induced Inflammation and Oxidative Stress via Decreasing COX-2 Expression in Macrophages. Front Mol Biosci. 2021 Jul 6;8:702107. doi: 10.3389/fmolb.2021.702107. PMID: 34295923; PMCID: PMC8290259.
  52. Niu KM, Bao T, Gao L, Ru M, Li Y, Jiang L, Ye C, Wang S, Wu X. The Impacts of Short-Term NMN Supplementation on Serum Metabolism, Fecal Microbiota, and Telomere Length in Pre-Aging Phase. Front Nutr. 2021 Nov 29;8:756243. doi: 10.3389/fnut.2021.756243. PMID: 34912838; PMCID: PMC8667784.
  53. Xiaonan Wang, Wuejun Hu, Yang Yang, Toshihiro Takata, Takashi Sakurai. Nicotinamide mononucleotide protects against ß-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res, 2016; DOI: 10.1016/j.brainres.2016.04.060.
  54. Chandrasekaran K, Najimi N, Sagi AR, Yarlagadda S, Salimian M, Arvas MI, Hedayat AF, Kevas Y, Kadakia A, Russell JW. NAD+ Precursors Repair Mitochondrial Function in Diabetes and Prevent Experimental Diabetic Neuropathy. Int J Mol Sci. 2022 Apr 28;23(9):4887. doi: 10.3390/ijms23094887. PMID: 35563288; PMCID: PMC9102948.
  55. Stefano Tarantini, Marta Noa Valcarcel-Ares, Peter Toth, Andriy Yabluchanskiy, Zsuzsanna Tucsek, Tamas Kiss, Peter Hertelendy, Michael Kinter, Praveen Ballabh, Zoltan Sule, Eszter Farkas, Joseph A. Baur, David A. Sinclair, Anna Csistzar, Zoltan Ungvari. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function inn aged mice. Redox Biol, 2019; DOI: 10.1016/j.redox.2019.101192.
  56. Tamas Kiss, Priya Balasubramanian, Marta Noa Valcarcel-Ares, Stefano Tarantini, Andriy Yabluchanskiy, Tamas Csipo, Agnes Lipecz, Dora Reglodi, Xin A. Zhang, Ferenc Bari, Eszter Farkas, Anna Csiszar, Zoltan Ungvari. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment. Geroscience, 2019; DOI: 10.1007/s11357-019-00074-2.
  57. Leila Hosseini, Fatemeh Farokhi-Sisakht, Reza Badalzadeh, Aytak Khabbaz, Javad Mahmoudi, Saeed Sadigh-Eteghad. Nicotinamide mononucleotide and melatonin alleviate aging-induced cognitive impairment via modulation of mitochondrial function and apoptosis in the prefrontal cortex and hippocampus. Neuroscience, 2019; DOI: 10.1016/j.neuroscience.2019.09.037.
  58. Klimova N, Fearnow A, Long A, Kristian T. NAD+ precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms. Exp Neurol. 2020;325:113144. doi:10.1016/j.expneurol.2019.113144.
  59. Kiss T, Nyúl-Tóth Á, Balasubramanian P, et al. Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: transcriptional footprint of SIRT1 activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects. Geroscience. 2020;42(2):527-546. doi:10.1007/s11357-020-00165-5.
  60. Chandrasekaran K, Choi J, Arvas MI, Salimian M, Singh S, Xu S, Gullapalli RP, Kristian T, Russell JW. Nicotinamide Mononucleotide Administration Prevents Experimental Diabetes-Induced Cognitive Impairment and Loss of Hippocampal Neurons. Int J Mol Sci. 2020 May 26;21(11):3756. DOI: 10.3390/ijms21113756. PMID: 32466541; PMCID: PMC7313029.
  61. Deng, X., Liang, X., Yang, H., Huang, Z., Huang, X., Liang, C., Kuang, Y., Qin, Y., Lin, F. and Luo, Z. (2020), Nicotinamide mononucleotide (NMN) protects bEnd.3 cells against H2O2‐induced damage via NAMPT and the NF‐κB p65 signalling pathway. FEBS Open Bio. Accepted Author Manuscript. DOI: 10.1002/2211-5463.13067.
  62. Chandrasekaran K, Najimi N, Sagi AR, Yarlagadda S, Salimian M, Arvas MI, Hedayat AF, Kevas Y, Kadakia A, Russell JW. NAD+ Precursors Repair Mitochondrial Function in Diabetes and Prevent Experimental Diabetic Neuropathy. Int J Mol Sci. 2022 Apr 28;23(9):4887. doi: 10.3390/ijms23094887. PMID: 35563288; PMCID: PMC9102948.
  63. Yu M, Zheng X, Cheng F, Shao B, Zhuge Q, Jin K. Metformin, Rapamycin, or Nicotinamide Mononucleotide Pretreatment Attenuate Cognitive Impairment After Cerebral Hypoperfusion by Inhibiting Microglial Phagocytosis. Front Neurol. 2022 Jun 13;13:903565. doi: 10.3389/fneur.2022.903565. PMID: 35769369; PMCID: PMC9234123.
  64. Hu Y, Huang Y, Xing S, Chen C, Shen D, Chen J. Aβ promotes CD38 expression in senescent microglia in Alzheimer’s disease. Biol Res. 2022 Mar 3;55(1):10. doi: 10.1186/s40659-022-00379-1. PMID: 35241173; PMCID: PMC8892694.
  65. Liu X, Dilxat T, Shi Q, Qiu T, Lin J. The combination of nicotinamide mononucleotide and lycopene prevents cognitive impairment and attenuates oxidative damage in D-galactose induced aging models via Keap1-Nrf2 signaling. Gene. 2022 May 15;822:146348. doi: 10.1016/j.gene.2022.146348. Epub 2022 Feb 17. PMID: 35183682.Mode.
  66. Miao Y, Cui Z, Gao Q, Rui R, Xiong B. Nicotinamide Mononucleotide Supplementation Reverses the Declining Quality of Maternally Aged Oocytes. Cell Rep. 2020 Aug 4;32(5):107987. doi: 10.1016/j.celrep.2020.107987. PMID: 32755581.
  67. Wang L, Chen Y, Wei J, Guo F, Li L, Han Z, Wang Z, Zhu H, Zhang X, Li Z, Dai X. Administration of nicotinamide mononucleotide improves oocyte quality of obese mice. Cell Prolif. 2022 Jul 10:e13303. doi: 10.1111/cpr.13303. Epub ahead of print. PMID: 35811338.
  68. Yoshino M, Yoshino J, Kayser BD, Patti G, Franczyk MP, Mills KF, Sindelar M, Pietka T, Patterson BW, Imai SI, Klein S. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science. 2021 Apr 22:eabe9985. doi: 10.1126/science.abe9985. Epub ahead of print. PMID: 33888596.
  69. Masaki Igarashi, Masaomi Miura, Yoshiko Nakagawa-Nagahama et al. Chronic nicotinamide mononucleotide supplementation elevates blood nicotinamide adenine dinucleotide levels and alters muscle motility in healthy old men, 09 June 2021.DOI: 10.21203/rs.3.rs-455083/v1
  70. Katayoshi T, Nakajo T, Tsuji-Naito K. Restoring NAD+ by NAMPT is essential for the SIRT1/p53-mediated survival of UVA- and UVB-irradiated epidermal keratinocytes. J Photochem Photobiol B. 2021 Jun 12;221:112238. doi: 10.1016/j.jphotobiol.2021.112238. Epub ahead of print. PMID: 34130091.
  71. Liao B, Zhao Y, Wang D, Zhang X, Hao X, Hu M. Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: a randomized, double-blind study. J Int Soc Sports Nutr. 2021 Jul 8;18(1):54. doi: 10.1186/s12970-021-00442-4. PMID: 34238308; PMCID: PMC8265078.
  72. Ito N, Takatsu A, Ito H, Koike Y, Yoshioka K, Kamei Y, Imai SI. Slc12a8 in the lateral hypothalamus maintains energy metabolism and skeletal muscle functions during aging. Cell Rep. 2022 Jul 26;40(4):111131. doi: 10.1016/j.celrep.2022.111131. PMID: 35905718.
  73. Empty
  74. Yasuda I, Hasegawa K, Sakamaki Y, Muraoka H, Kawaguchi T, Kusahana E, Ono T, Kanda T, Tokuyama H, Wakino S, Itoh H. Pre-emptive Short-term Nicotinamide Mononucleotide Treatment in a Mouse Model of Diabetic Nephropathy. J Am Soc Nephrol. 2021 Jun 1;32(6):1355-1370. doi: 10.1681/ASN.2020081188.
  75. Ru M, Wang W, Zhai Z, Wang R, Li Y, Liang J, Kothari D, Niu K, Wu X. Nicotinamide mononucleotide supplementation protects the intestinal function in aging mice and D-galactose induced senescent cells. Food Funct. 2022 Jul 18;13(14):7507-7519. doi: 10.1039/d2fo00525e. PMID: 35678708.
  76. Yi M, Ma Y, Zhu S, Luo C, Chen Y, Wang Q, Deng H. Comparative proteomic analysis identifies biomarkers for renal aging. Aging (Albany NY). 2020 Nov 6;12(21):21890-21903. doi: 10.18632/aging.104007. Epub 2020 Nov 6. PMID: 33159023; PMCID: PMC7695359.
  77. Murata MM, Kong X, Moncada E, Chen Y, Imamura H, Wang P, Berns MW, Yokomori K, Digman MA. NAD+ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol Biol Cell. 2019 Sep 15;30(20):2584-2597. doi: 10.1091/mbc.E18-10-0650. Epub 2019 Aug 7. PMID: 31390283; PMCID: PMC6740200.
  78. Mateuszuk Ł, Campagna R, Kutryb-Zając B, Kuś K, Słominska EM, Smolenski RT, Chlopicki S. Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside. Biochem Pharmacol. 2020 Aug;178:114019. doi: 10.1016/j.bcp.2020.114019.
  79. Gao JF, Tang L, Luo F, Zhang YY, Chen L, Ding H, Meng ZD. Nicotinamide mononucleotide ameliorates DNFB-induced atopic dermatitis-like symptoms in mice by blocking activation of ROS-mediated JAK2/STAT5 signaling pathway. Int Immunopharmacol. 2022 Aug;109:108812. doi: 10.1016/j.intimp.2022.108812. Epub 2022 May 6. PMID: 35533554.
  80. Ren C, Hu C, Wu Y, Li T, Zou A, Yu D, Shen T, Cai W, Yu J. Nicotinamide Mononucleotide Ameliorates Cellular Senescence and Inflammation Caused by Sodium Iodate in RPE. Oxid Med Cell Longev. 2022 Jul 18;2022:5961123. doi: 10.1155/2022/5961123. PMID: 35898618; PMCID: PMC9313989.
  81. Hasegawa K, Sakamaki Y, Tamaki M, Wakino S. Nicotinamide mononucleotide ameliorates adriamycin-induced renal damage by epigenetically suppressing the NMN/NAD consumers mediated by Twist2. Sci Rep. 2022 Aug 12;12(1):13712. doi: 10.1038/s41598-022-18147-2. PMID: 35962139; PMCID: PMC9374671.
  82. Chang TM, Yang TY, Huang HC. Nicotinamide Mononucleotide and Coenzyme Q10 Protects Fibroblast Senescence Induced by Particulate Matter Preconditioned Mast Cells. Int J Mol Sci. 2022 Jul 7;23(14):7539. doi: 10.3390/ijms23147539. PMID: 35886889; PMCID: PMC9319393.
  83. Ma D, Hu L, Wang J, Luo M, Liang A, Lei X, Liao B, Li M, Xie M, Li H, Gong Y, Zi D, Li X, Chen X, Liao X. Nicotinamide mononucleotide improves spermatogenic function in streptozotocin-induced diabetic mice via modulating the glycolysis pathway. Acta Biochim Biophys Sin (Shanghai). 2022 Jul 25. doi: 10.3724/abbs.2022099. Epub ahead of print. PMID: 35929593.
  84. Takeshi Katayoshi, Sachi Uehata, Noe Nakashima et al. Nicotinamide adenine dinucleotide metabolism and arterial stiffness after long-term nicotinamide mononucleotide supplementation: a randomized, double-blind, placebo-controlled trial, 29 July 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1802944/v1].
  85. Kimura S, Ichikawa M, Sugawara S, et al. (September 05, 2022) Nicotinamide Mononucleotide Is Safely Metabolized and Significantly Reduces Blood Triglyceride Levels in Healthy Individuals. Cureus 14(9): e28812. doi:10.7759/cureus.28812.
  86. Pan Huang, Xuxin Wang, Siyu Wang, Zhipeng Wu, Zhengrong Zhou, Genbao Shao, Caifang Ren, Meiqian Kuang, Yan Zhou, Anqi Jiang, Weihong Tang, Jianye Miao, Xin Qian, Aihua Gong, Min Xu. Treatment of inflammatory bowel disease: Potential effect of NMN on intestinal barrier and gut microbiota. Current Research in Food Science, Volume 5, 2022, Pages 1403 1411. ISSN 2665-9271. https://doi.org/10.1016/j.crfs.2022.08.011.
  87. Aflatounian A, Paris VR, Richani D, Edwards MC, Cochran BJ, Ledger WL, Gilchrist RB, Bertoldo MJ, Wu LE, Walters KA. Declining muscle NAD+ in a hyperandrogenism PCOS mouse model: Possible role in metabolic dysregulation. Mol Metab. 2022 Sep 9;65:101583. doi: 10.1016/j.molmet.2022.101583. Epub ahead of print. PMID: 36096453; PMCID: PMC9490589.
  88. Setoyama, Daiki and Nomiyama, Tomoko and Yamamoto, Masamichi and Kang, Dongchon, β-Nicotinamide Mononucleotide Supplementation Increases the Nucleotide Pool Through Multiple Pathways, Improving Mitochondrial DNA Metabolism. Available at SSRN: https://ssrn.com/abstract=4227260 or http://dx.doi.org/10.2139/ssrn.4227260.
  89. Lee D, Tomita Y, Miwa Y, Shinojima A, Ban N, Yamaguchi S, Nishioka K, Negishi K, Yoshino J, Kurihara T. Nicotinamide Mononucleotide Prevents Retinal Dysfunction in a Mouse Model of Retinal Ischemia/Reperfusion Injury. International Journal of Molecular Sciences. 2022; 23(19):11228. https://doi.org/10.3390/ijms231911228.
  90. Luo C, Ding W, Yang C, Zhang W, Liu X, Deng H. Nicotinamide Mononucleotide Administration Restores Redox Homeostasis via the Sirt3-Nrf2 Axis and Protects Aged Mice from Oxidative Stress-Induced Liver Injury. J Proteome Res. 2022 Jul 1;21(7):1759-1770. doi: 10.1021/acs.jproteome.2c00167. Epub 2022 Jun 14. PMID: 35699728.
  91. Jin R, Niu C, Wu F, Zhou S, Han T, Zhang Z, Li E, Zhang X, Xu S, Wang J, Tian S, Chen W, Ye Q, Cao C, Cheng L. DNA damage contributes to age-associated differences in SARS-CoV-2 infection. Aging Cell. 2022 Oct 18:e13729. doi: 10.1111/acel.13729. Epub ahead of print. PMID: 36254583.
  92. Zhao X, Zhang M, Wang J, Ji K, Wang Y, Sun X, Xu C, Wang Q, He N, Song H, Du L, Wang F, Huang H, Liu Y, Liu Q. NMN ameliorated radiation induced damage in NRF2-deficient cell and mice via regulating SIRT6 and SIRT7. Free Radic Biol Med. 2022 Oct 14:S0891-5849(22)00897-8. doi: 10.1016/j.freeradbiomed.2022.10.267. Epub ahead of print. PMID: 36252808.
  93. Shen X, Wu B, Jiang W, Li Y, Zhang Y, Zhao K, Nie N, Gong L, Liu Y, Zou X, Liu J, Jin J, Ouyang H. Scale bar of aging trajectories for screening personal rejuvenation treatments. Comput Struct Biotechnol J. 2022 Oct 21;20:5750-5760. doi: 10.1016/j.csbj.2022.10.021. PMID: 36382193; PMCID: PMC9619353.
  94. Wong W, Crane ED, Zhang H, Li J, Day TA, Green AE, Menzies KJ, Crane JD. Pgc-1α controls epidermal stem cell fate and skin repair by sustaining NAD+ homeostasis during aging. Mol Metab. 2022 Nov;65:101575. doi: 10.1016/j.molmet.2022.101575. Epub 2022 Aug 17. PMID: 35987498; PMCID: PMC9463389.
  95. Yi L, Maier AB, Tao R, Lin Z, Vaidya A, Pendse S, Thasma S, Andhalkar N, Avhad G, Kumbhar V. The efficacy and safety of β-nicotinamide mononucleotide (NMN) supplementation in healthy middle-aged adults: a randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trial. Geroscience. 2022 Dec 8. doi: 10.1007/s11357-022-00705-1. Epub ahead of print. PMID: 36482258.
  96. Lee, D.; Tomita, Y.; Miwa, Y.; Jeong, H.; Shinojima, A.; Ban, N.; Yamaguchi, S.; Nishioka, K.; Negishi, K.; Yoshino, J.; Kurihara, T. Nicotinamide Mononucleotide Protects against Retinal Dysfunction in a Murine Model of Carotid Artery Occlusion. Int. J. Mol. Sci.2022,23, 14711. https://doi.org/10.3390/ijms232314711.
  97. Tian Y, Zhu CL, Li P, Li HR, Liu Q, Deng XM, Wang JF. Nicotinamide Mononucleotide Attenuates LPS-Induced Acute Lung Injury With Anti-Inflammatory, Anti-Oxidative and Anti-Apoptotic Effects. J Surg Res. 2022 Nov 5;283:9-18. doi: 10.1016/j.jss.2022.09.030. Epub ahead of print. PMID: 36347171.
  98. ZHAO, B., Liu, C., Qiang, L., Liu, J., Qiu, Z., Zhang, Z., Zhang, J., Li, Y., & Zhang, M. (2022). Clinical observation of the effect of nicotinamide mononucleotide on the improvement of insomnia in middle-aged and old adults. American Journal of Translational Medicine, 6(4), 167–176.
  99. Wang H, Sun Y, Pi C, Yu X, Gao X, Zhang C, Sun H, Zhang H, Shi Y, He X. Nicotinamide Mononucleotide Supplementation Improves Mitochondrial Dysfunction and Rescues Cellular Senescence by NAD+/Sirt3 Pathway in Mesenchymal Stem Cells. International Journal of Molecular Sciences. 2022; 23(23):14739. https://doi.org/10.3390/ijms232314739.
  100. Margier M, Kuehnemann C, Hulo N, Morales J, Ashok Kumaar PV, Cros C, Cannelle H, Charmetant J, Verdin E, Canault M, Grozio A. Nicotinamide Mononucleotide Administration Prevents Doxorubicin-Induced Cardiotoxicity and Loss in Physical Activity in Mice. Cells. 2022 Dec 27;12(1):108. doi: 10.3390/cells12010108. PMID: 36611902; PMCID: PMC9818647.
  101. Wang L, Zhao M, Qian R, Wang M, Bao Q, Chen X, Du W, Zhang L, Ye T, Xie Y, Zhang B, Peng L, Yao Y. Nicotinamide Mononucleotide Ameliorates Silica-Induced Lung Injury through the Nrf2-Regulated Glutathione Metabolism Pathway in Mice. Nutrients. 2023; 15(1):143. https://doi.org/10.3390/nu15010143.
  102. Jiang Y, Luo Z, Gong Y, Fu Y, Luo Y. NAD+ supplementation limits triple-negative breast cancer metastasis via SIRT1-P66Shc signaling. Oncogene. 2023 Jan 23. doi: 10.1038/s41388-023-02592-y. Epub ahead of print. PMID: 36690678.
  103. Fang D, Xu T, Sun J, Shi J, Li F, Yin Y, Wang Z, Liu Y. Nicotinamide Mononucleotide Ameliorates Sleep Deprivation-Induced Gut Microbiota Dysbiosis and Restores Colonization Resistance against Intestinal Infections. Adv Sci (Weinh). 2023 Jan 25:e2207170. doi: 10.1002/advs.202207170. Epub ahead of print. PMID: 36698264.
  104. Zhu X, Cheng J, Yu J, Liu R, Ma H, Zhao Y. Nicotinamide mononucleotides alleviated neurological impairment via anti-neuroinflammation in traumatic brain injury. Int J Med Sci 2023; 20(3):307-317. doi:10.7150/ijms.80942.
  105. Rashid MA, Oliveros A, Kim YS, Jang MH. Nicotinamide Mononucleotide Prevents Cisplatin-Induced Mitochondrial Defects in Cortical Neurons Derived from Human Induced Pluripotent Stem Cells. Brain Plast. 2022 Dec 20;8(2):143-152. doi: 10.3233/BPL-220143. PMID: 36721392; PMCID: PMC9837732.
  106. Wu K, Li B, Ma Y, Tu T, Lin Q, Zhu J, Zhou Y, Liu N, Liu Q. Nicotinamide mononucleotide attenuates HIF-1α activation and fibrosis in hypoxic adipose tissue via NAD+/SIRT1 axis. Front Endocrinol (Lausanne). 2023 Jan 26;14:1099134. doi: 10.3389/fendo.2023.1099134. PMID: 36777361; PMCID: PMC9909340.
  107. Jiang Y, Wang D, Zhang C, Jiao Y, Pu Y, Cheng R, Li C, Chen Y. Nicotinamide mononucleotide restores oxidative stress-related apoptosis of oocyte exposed to benzyl butyl phthalate in mice. Cell Prolif. 2023 Feb 9:e13419. doi: 10.1111/cpr.13419. Epub ahead of print. PMID: 36756972.
  108. Montali I, Berti CC, Morselli M, Acerbi G, Barili V, Pedrazzi G, Montanini B, Boni C, Alfieri A, Pesci M, Loglio A, Degasperi E, Borghi M, Perbellini R, Penna A, Laccabue D, Rossi M, Vecchi A, Tiezzi C, Reverberi V, Boarini C, Abbati G, Massari M, Lampertico P, Missale G, Ferrari C, Fisicaro P. Deregulated intracellular pathways define novel molecular targets for HBV-specific CD8 T cell reconstitution in chronic hepatitis B. J Hepatol. 2023 Mar 7:S0168-8278(23)00167-8. doi: 10.1016/j.jhep.2023.02.035. Epub ahead of print. PMID: 36893853.